Как определить фазы грм
Что такое фазы газораспределения и как они работают
Отрезки времени от начала момента открытия клапанов двигателя до их полного закрытия относительно мертвых точек движения поршня получили наименование фазы газораспределения. Их влияние на работу двигателя очень велико. Так, от продолжительности фаз зависит эффективность заполнения и очистки цилиндров в процессе работы мотора. Это напрямую определяет экономичность расхода топлива, мощность и крутящий момент.
Сущность и роль фаз газораспределения
На данный момент существуют двигатели, в которых фазы не могут изменяться принудительно, и двигатели, оснащенные механизмами изменения фаз газораспределения (например, CVVT). Для первого типа двигателей фазы подбираются эксперементально при конструировании и расчете силового агрегата.
Визуально все они отображаются на специальных диаграммах фаз газораспределения. Верхняя и нижняя мертвые точки (ВМТ и НМТ соответственно) представляют собой крайние позиции поршня, движущегося в цилиндре, которые соответствуют наибольшему и наименьшему расстоянию между произвольной точкой поршня и осью вращения коленвала мотора. Точки начала открытия и закрытия клапанов (длина фазы) показываются в градусах и рассматриваются относительно вращения коленчатого вала.
Управление фазами осуществляется при помощи газораспределительного механизма (ГРМ), который состоит из следующих элементов:
Рабочий цикл двигателя всегда состоит из тактов, каждому из которых соответствует определенное положение клапанов на впуске и выпуске. Таким образом, начало и конец фазы зависят от угла положения коленвала, который связан с распределительным валом, управляющим положением клапанов.
За один оборот распредвала коленчатый вал выполняет два оборота и его суммарный угол поворота за рабочий цикл равен 720°.
Работу фаз газораспределения для четырехтактного двигателя рассмотрим на следующем примере (см. картинку):
Фазы грм также зависят от профиля и позиции кулачков распредвала. Так, если они одинаковы на впуске и выпуске, то длительность открытия клапанов также будет одинакова.
Почему выполняется запаздывание и опережение срабатывания клапанов?
Чтобы улучшить наполнение цилиндров, а также обеспечить более интенсивную очистку от отработавших газов, срабатывание клапанов происходит не в момент достижения поршня мертвых точек, а с небольшим опережением или запаздыванием. Так, открытие впускного клапана выполняется до момента прохождения поршнем ВМТ (от 5° до 30°). Это позволяет обеспечить более интенсивное нагнетание свежего заряда в камеру сгорания. В свою очередь, закрытие впускного клапана происходит с запаздыванием (после того как поршень достиг нижней мертвой точки), что позволяет продолжить наполнение цилиндра горючим за счет сил инерции, так называемый инерционный наддув.
Выпускной клапан также открывается с опережением (от 40° до 80°) до момента достижения поршнем НМТ, что позволяет обеспечить выход большей части отработавших газов под действием собственного давления. Закрытие выпускного клапана, напротив, происходит с запаздыванием (после прохождения поршнем верхней мертвой точки), что позволяет силам инерции продолжить удаление отработавших газов из полости цилиндра и делает более эффективной его очистку.
Углы опережения и запаздывания не являются общими для всех двигателей. Более мощные и быстроходные имеют большие значения этих интервалов. Таким образом, их фазы газораспределения будут шире.
Этап работы двигателя, при котором оба клапана открыты одновременно, получил название перекрытие клапанов. Как правило, величина перекрытия составляет около 10°. При этом, поскольку длительность перекрытия очень мала, а раскрытие клапанов незначительно, утечки не происходит. Это довольно благоприятный этап для наполнения и очистки цилиндров, что особенно важно при высоких оборотах.
В начале открытия впускного клапана текущий уровень давления в камере сгорания выше, чем атмосферное. В результате отработавшие газы очень быстро перемещаются к выпускному клапану. Когда двигатель перейдет на такт впуска, в камере установится высокое разрежение, выпускной клапан полностью закроется, а впускной раскроется на достаточную для интенсивного наполнения цилиндра величину сечения.
Особенности регулируемых фаз газораспределения
При высоких скоростях двигателю автомобиля необходимо больше объема воздуха. И поскольку в нерегулируемых ГРМ клапаны могут закрыться до того, как в камеру сгорания поступает его достаточное количество, работа мотора оказывается неэффективной. Для решения этой проблемы были разработаны различные способы регулировки фаз газораспределения.
Первые моторы, имеющие подобную функцию, позволяли выполнять ступенчатую регулировку, которая позволяла менять длину фазы в зависимости от достижения двигателем определенных величин. Со временем появились бесступенчатые конструкции, позволяющие выполнить более плавную и оптимальную настройку.
Простейшим решением является система сдвига фаз (CVVT), реализуемая путем поворота распределительного вала относительно коленвала на определенный угол. Это позволяет изменить момент открытия и закрытия клапанов, но фактическая продолжительность фазы остается неизменной.
Чтобы изменить непосредственно длительность фазы, в ряде автомобилей используются несколько кулачковых механизмов, а также колеблющиеся кулачки. Для точной работы регуляторов применяются комплексы из датчиков, контроллера и исполнительных механизмов. Управление такими устройствами может быть электрическим или гидравлическим.
Одной из основных причин внедрения систем с регулировкой ГРМ является ужесточение экологических стандартов по уровню токсичности отработавших газов. Это означает, что для большинства производителей вопрос оптимизации фаз газораспределения остается одним из важнейших.
Системы изменения фаз газораспределения двигателя
ФИКСИРОВАННЫЕ ФАЗЫ
Фазами газораспределения принято называть моменты открытия и закрытия впускных и выпускных клапанов, выраженные в градусах поворота коленчатого вала относительно ВМТ и НМТ.
В графическом выражении период открытия и закрытия принято показывать диаграммой.
Если мы говорим о фазах, то изменению могут поддаваться:
Пока ещё большинство двигателей имеют фиксированные фазы газораспределения (но тенденция стремительно меняется). Это значит, что описанные выше параметры определяются лишь формой кулачка распределительного вала. Недостаток такого конструктивного решения в том, что рассчитанная конструкторами форма кулачков для работы двигателя будет оптимальной только в узком диапазоне оборотов. Гражданские двигатели проектируются таким образом, чтобы фазы газораспределения соответствовали обычным условиям эксплуатации автомобиля. Ведь если сделать двигатель, который очень хорошо будет ехать «с низов», то на оборотах выше средних крутящий момент, как и пиковая мощность, будет слишком низким. Именно эту проблему решает система изменения фаз газораспределения.
ПРИНЦИП ДЕЙСТВИЯ VVT
Суть работы системы VVT в том, чтобы в реальном времени, ориентируясь на текущий режим работы двигателя, корректировать фазы открытия клапанов. В зависимости от конструктивных особенностей каждой из систем, реализовывается это несколькими путями:
Наибольшее распространение получили системы, в которых регулировка фаз осуществляется изменением углового положения распределительного вала относительно шестерни. Несмотря на то что в работу разных систем положен схожий принцип, многие автоконцерны используются индивидуальные обозначения.
КАК ФАЗЫ ВЛИЯЮТ НА РАБОТУ ДВИГАТЕЛЯ
Характер поведения газов внутри ДВС изменяется в зависимости от режима работы мотора. К примеру, на холостых оборотах скорость движения поршней значительно ниже, чем в режиме работы на максимальных оборотах. Соответственно, колебания газовой среды во впускном и выпускном коллекторах значительно зависят от режимной точки работы двигателя. Упомянутые колебания способны как приносить пользу, создавая резонансный наддув, так и вред – паразитные колебания, застои. Именно поэтому скорость и эффективность наполнения цилиндров в разных режимных точках работы двигателя значительно отличаются.
На низких оборотах максимальное наполнение цилиндров будет обеспечивать позднее открытие выпускного клапана и раннее закрытие впускного. В таком случае перекрытие клапанов (положение, в котором выпускные и впускные клапаны одновременно открыты) минимально, поэтому исключается возможность выталкивания оставшихся в цилиндре выхлопных газов обратно во впуск. Именно из-за широкофазных («верховых») распределительных валов на форсированных моторах часто приходится устанавливать повышенные обороты холостого хода.
На высоких оборотах для получения максимальной отдачи от двигателя фазы должны быть максимально широкими, так как за единицу времени поршни будут прокачивать намного больше воздуха. При этом перекрытие клапанов будет положительно влиять на продувку цилиндров (выход оставшихся выхлопных газов) и последующую наполняемость.
Именно поэтому установка системы, позволяющей подстроить фазы газораспределения, а в некоторых системах и высоту подъема клапанов, под режим работы двигателя, делает двигатель эластичней, мощней, экономичней и в то же время дружелюбней к окружающей среде.
Первооткрывателями системы изменения фаз газораспределения принято считать инженеров Honda. Они воплотили в модели Integra механизм VTEC, что позволило прибавить 1,6 литровому мотору от 40 до 60 л.с.
СИСТЕМЫ С РАЗНОЙ ФОРМОЙ КУЛАЧКОВ
ПРИНЦИП РАБОТЫ
Разберем принцип работы VTEC на примере реализации от Honda (остальные системы работают по схожему принципу).
Как вы можете увидеть из схемы, в режиме низких оборотов усилие на клапаны через коромысла передается набеганием двух крайних кулачков. При этом среднее коромысло двигается «вхолостую». При переходе в режим высоких оборотов давлением масла выдвигается запорный шток (блокирующий механизм), который превращает 3 коромысла в единый механизм. Увеличение хода клапанов достигается за счет того, что среднему коромыслу соответствует кулачок распредвала с наибольшим профилем.
Разновидность системы VTEC является конструкция, в которой режимам: низких, средних и высоких оборотов соответствуют разные коромысла и кулачки. На низких оборотах кулачком меньшей формы открывается только один клапан, в режиме средних оборотов два меньших по форме кулачка открывают два клапана, а на больших оборотах уже наибольший кулачок открывает оба клапана (3-stage SOHC VTEC).
К началу 2000 годов большинство автомобилестроителей перешли на простую и надежную систему изменения фаз, где ими управляли не кулачки, а гидравлические механизмы, расположенные в шестернях ремня ГРМ и поворачивавшие распредвал.
Несмотря на то, что, в отличие от систем подобных VTEC, поворот распредвалов не регулирует ширину фаз (ведь клапаны всегда поднимаются на одну и ту же высоту, и длительность их открытия не меняется), у него есть свои преимущества. Точнее, по принципу работы единственное, но ключевое. Эта система изменяет фазы не ступенчато — постоянно.
УСТРОЙСТВО, ПРИНЦИП РАБОТЫ VVT
За угловое смещение распределительного вала отвечает фазовращатель, представляющий собой гидромуфту, работой которой управляет ЭБУ двигателя.
Конструктивно фазовращатель состоит из ротора, который соединен с распредвалом, и корпуса, наружная часть которого является шестерней распределительного вала. Между корпусом гидроуправляемой муфты и ротором находятся полости заполненные маслом. Заполнение их приводит к перемещению ротора, а, следовательно, и смещению распредвала относительно шестерни. В полости масло подается по специальным каналам. Регулировка количества поступающего через каналы масла осуществляется электрогидравлическим распределителем. Распределитель представляет собой обычный электромагнитный клапан, который управляется ЭБУ посредством ШИМ-сигнала. Именно ШИМ-сигнал делает возможным плавное изменение фаз газораспределения.
Система управления, в виде ЭБУ двигателя, использует сигналы следующих датчиков:
Очередной виток развития
Ступенчатое изменение продолжительности открытия и высоты подъема клапанов позволяет не только изменять фазы газораспределения, но и практически полностью снять с дроссельной заслонки функцию регулирования нагрузки на двигатель. Речь в первую очередь о системе Valvetronic от BMW. Именно специалисты БМВ впервые добились подобных результатов. Сейчас схожими разработками обладают: Toyota (Valvematic), Nissan (VVEL), Fiat (MultiAir), Peugeot (VTI).
Открытая на небольшой угол дроссельная заслонка создает значительное противодействие движению воздушных потоков. В итоге часть полученной от сгорания топливовоздушной смеси энергии уходит на преодоление насосных потерь, что негативно сказывается на мощности и экономически автомобиля.
1 — Серводвигатель; 2 — Червячный вал; 3 — Возвратная пружина; 4 — Кулисный блок; 5 — Распредвал впускных клапанов; 6 — Рампа; 7 — Гидравлическая система компенсации клапанного зазора (HVA) на стороне впуска; 8 — Впускной клапан; 9 — Выпускной клапан; 10 — Роликовый рычаг толкателя на стороне выпуска; 11 — Гидравлическая система компенсации клапанного зазора (HVA) на стороне выпуска; 12 — Роликовый рычаг толкателя на стороне впуска; 13 — Промежуточный рычаг; 14 — Эксцентриковый вал; 15 — Червячное колесо; 16 — Распредвал выпускных клапанов;
В системе Valvetronic количество поступающего в цилиндры воздуха регулируется степенью подъема и продолжительностью открытия клапанов. Реализовать это получилось при помощи внедрения в конструкцию эксцентрикового вала и промежуточного рычага. Рычаг связан червячной передачей с сервоприводом, управляет которым ЭБУ. Изменения положения промежуточного рычага смещает воздействие коромысла в сторону большего или меньшего открытия клапанов. Более подробно принцип работы показан на видео.
Сочетание фазовращателей на валах, бесступенчатой регулировки хода и длительности открытия клапанов позволяет, по оценкам инженеров, обрести 10–15%-процентное снижение расхода топлива и аналогичную прибавку крутящего момента.
Отказ от ГРМ
Сейчас есть разработки в которых полностью отсутствуют вращающиеся элементы ГРМ: такие как распределительный вал и приводной ремень(цепь), что существенно уменьшает потери на трение. Система электромагнитных соленоидов позволяет управлять работой клапанов. На каждый клапан предусмотрен отдельный соленоид, работу которого контролирует система управления.
Как определить фазы грм
Фазы газораспределения четырехтактных двигателей.
Дайджест от Михаила Сорокина (aka Sharoka)
Выпускной клапан начинает открываться в конце процесса расширения с опережением относительно НМТ на угол Фо.в
Периоды газообмена различают, руководствуясь величиной направления и скорости во впускных или выпускных клапанах и направлением движения поршня.
Свободный выпуск. От начала открытия выпускного клапана до НМТ продолжается свободный выпуск. Истечение газов из цилиндра при увеличении его объема происходит следствии того, что давление в начале выпуска и вплоть до НМТ выше, чем в выпускном патрубке. Температура газов в цилиндре в начале такта выпуска 1300 – 700 град. Скорость истечения газов 720 – 550 м/сек. В НМТ температура и скорость понижаются до значений, характерных для принудительного выпуска.
Принудительный выпуск. Продолжается от НМТ до ВМТ.
Средняя скорость в клапанной щели 80 – 250 м/с. Давление в цилиндре в начале открытия впускного клапана выше давления во впускном трубопроводе, продукты сгорания вытекают одновременно через выпускной клапан и открывающийся впускной клапан, происходит так называемый заброс продуктов сгорания во впускной трубопровод. Заброс продолжается и после ВМТ. Поэтому наполнение начинается с запаздыванием.
Наполнение. От ВМТ до НМТ происходит наполнение. Скорость в клапанной щели 80 – 200 м/с.
Дозарядка. Поле НМТ – при перемещении поршня в направлении ВМТ в такте сжатия – давление в цилиндре остается некоторое время меньше давления перед впускным клапаном, несмотря на уменьшение объема цилиндра
Процессы воспламенения и горения
Окислительные процессы являются процессами перемещения электронов с орбит атомов или ионов окисляющегося вещества на орбиты атомов или ионов окислителя. Для такого перемещения электронов необходима энергия, которая подводится к молекулам в начале реакции в виде кинетической энергии при соударениях. Число соударений и их энергия зависят от концентрации реагентов в смеси и температуры и могут быть определены для гомогенных и гетерогенных смесей из законов молекулярной физики.
Развитию теории окисления углеводородов положила начало перекисная теория окисления, предложенная А. Н. Бахом в 1897 г. по которой окисление происходит через промежуточные образования перекисей, обладающих большей окислительной способностью, чем молекулярный кислород.
Предложенная в 1903 г. гидроскиляционная теория была заметным началом в познании последовательности промежуточных реакций. Согласно этой теории, на некоторой стадии происходит распад молекул кислорода на атомы и внедрение последних между атомами углерода и водорода углеводородов с образованием молекул, содержащих группу ОН и ускоряющих окислительные процессы.
Н. Н. Семеновым в 1927 г. была высказана идея о возможности цепных реакций (существование которых было обнаружено В. Нернстом в 1919 г.) при окислении углеводородов. Эта идея была развита впоследствии в стройную теорию цепных окислительных процессов, объясняющую процессы воспламенения и сгорания топлив и объединившую в себе перекисную и гндроксиляцнонную теории.
В зависимости от условий в зоне реакции может развиваться неразветвленная или разветвленная цепная реакция. В первом случае вместо одного активного центра образуется один новый, и реакция идет до тех пор, пока не израсходуются реагенты или реакция не оборвется в результате местных неблагоприятных условии (мало число соударений активных частиц промежуточных продуктов из-за малой концентрации реагентов или пониженной температуры, замедляющее каталитическое действие некоторых реагентов, стенок камеры сгорания).
Во втором случае в результате реакции в одном активном центре могут образоваться два или больше новых активных центров; как следствие, реакция окисления саморазгоняется, несмотря на то, что концентрации реагентов уже начали убывать. Процесс ускоряется, так как возрастают энергия соударений и в результате дробления молекул – число центров реакций. При разветвленной цепной реакции скорость сгорания могла бы быстро увеличиться до бесконечности. Однако этого не происходит, так как часть ответвлений в реакции обрывается (главным образом около стенок камеры сгорания), а число частиц, вступающих в реакцию, уменьшается по мере расходования смеси. Достигнув максимальной величины, скорость реакции начнет уменьшаться.
После того как в реакцию вступит достаточно много молекул, отвод теплоты от заряда в стенки и на испарение топлива будет компенсироваться выделяющейся теплотой окисления (момент теплового равновесия) и в камере установится так называемая критическая температура Гкр, или температура воспламенения смеси, по достижении которой начинается быстрое общее повышение температуры и давления. Момент теплового равновесия можно заметить, если индикатором давления записать сначала изменение давления в камере без впрыска топлива, а затем при впрыске.
Измеренный по индикаторной диаграмме угол Фi будет зависеть от чувствительности датчика давлений: чем он чувствительнее и чем точнее записывающая часть индикатора зафиксирует сигнал датчика, тем меньше окажется угол Фi и тем точнее он будет определен. Ясно, что угол Фi зависит от физико-химических свойств топлива и условий paзвития окислительных процессов в камере. Более глубокое изучение процессов в период самовоспламенения топлива с использованием химических, оптических и ионных методов позволило установить, что в цепочно-тепловой теории воспламенения при различных условиях могут преобладать цепочные или тепловые процессы, вследствие чего А. С. Соколиком были выдвинуты гипотезы низкотемпературного многостадийного к высокотемпературного одностадийного воспламенения.
Длительность та и число образующихся очагов сгорания, как показывают эксперименты, мало зависят от тонкости распыливания топлива, так как даже при очень грубом распыливании оказывается достаточное для воспламенения количество мелких капель. Увеличение угла опережения впрыска топлива удлиняет период задержки воспламенения для всех сортов топлива, так как процессы прогрева, испарения топлива и разгона химических реакций начинаются при более низких температурах; интенсификация турбулентности увеличивает период Тi вследствие снижения температуры и концентрации паров топлива в вероятной точке образования очага сгорания.
5 с. Естественно предположить, что это возможно в гомогенной, достаточно однородной смеси.
Если объем образовавшегося очага сгорания достаточно велик, а времени его существования достаточно для прогрева и воспламенения окружающих слоев смеси, то процесс сгорания начинает распространяться, и через некоторое время т; (период задержки воспламенения) на индикаторной диаграмме давлений можно будет заметить отрыв линии давления в процессе начавшегося его рания от линии давления сжатия, которую можно эд-писать при выключенном зажигании. Если же объем очага сгорания и длительность его поддержки разрядом оказались недостаточными, то очаг затухает к сгорание не развивается.
Высокотемпературное воспламенение характерно для всех двигателей с электрическим зажиганием, а также для дизелей при использовании топлива с большим содержанием ароматиков.
Опытами в бомбах установлено, что распространение сгорания по объему возможно только при определенных составах горючих смесей, ограниченных как минимальными, так и максимальными значениями а, различными для разных условий сгорания (температура, давление, количество инертных газов), В табл. 7 даны концентрационные пределы распространения пламени в воздушных смесях топлив при атмосферных условиях во время испытаний в бомбе.
После того как пламя распространится по всему объему камеры сгорания, количество смеси, вступающей в реакцию, уменьшается. Снижается и скорость реакций, так как концентрации топлива и окислителя в зонах сгорания уменьшаются, а концентрация продуктов сгорания увеличивается. Вместе с возрастающим отводом теплоты в стенки камеры сгорания и объемом цилиндра с началом перемещения поршня от в. м. т. это приводит к тому, что давление, достигнув максимального значения при положении поршня, соответствующем углу Фi начинает снижаться.
Надежно записанных диаграмм изменения температур в процессе сгорания еще недостаточно для количественной характеристики процессов сгорания и обобщений. Однако установлено, что температуры, полученные из уравнении состояния газов в различные моменты сгорания и расширения при использовании давлений из индикаторных диаграмм н известных конструктивных объемов камеры сгорании н цилиндра, также возрастают в процессе сгорании и достигают максимальных значений в момент Фi (см. рис. 53 ), позднее момента достижения максимальных давлений. Последнее обстоятельство объясняется совместным влиянием увеличения объема газа вследствие перемещения поршня от ВМТ и продолжающимся подводом теплоты к газу.
При некоторых условиях описанный нормальный процесс сгорания может нарушаться, что отражается на мощности и экономичности работы двигателя, шумности, токсичности отработавших газов, надежности и сроке работы двигателя. К таким нарушениям сгорания относят следующие.
Детонационное сгорание возникает в наиболее удаленном от свечи зажигания месте, расположенном около горячих стенок. Смесь до прихода фронта пламени нормального сгорания успевает в таких местах сильно перегреться и подвергается интенсивному сжатию при распространении фронта пламени, что способствует быстрому развитию в ней предпламенных реакций с образованием и накоплением химически активных промежуточных продуктов (радикалы, перекиси, атомы водорода и кислорода). В результате таких процессов возникает, самовоспламенение смеси с самоускоряющимися процессами. Сгорание приобретает взрывной характер с резким местным повышением температуры и образованием ударной волны давления; скорость ее перемещения в камере может дойти до 1000 – 2300 м/с. Отражаясь от стенок камеры сгорания, ударная волна образует новые волны и новые очаги воспламенения, приводящие к развитию диссоциации с образованием окиси углерода, атомарных углерода, водорода, кислорода и поглощением большого количества теплоты. Продукты диссоциации и несгоревшая часть топлива догорают в процессе расширения неполностью и с меньшей эффективностью, мощность и экономичность снижаются, а перегрев двигателя и дымление на выпуске увеличиваются тем сильнее, чем в большем объеме смеси развивается детонация. Ударные волны, действуя локально и кратковременно, не повышают работу газов, но резко увеличивают теплоотдачу в стенки, механические и тепловые ударные нагрузки на детали, газовую коррозию поверхностей, особенно днищ поршней. Длительная работа двигателей с детонацией недопустима.
Если за время задержки воспламенения впрыснуто много топлива, то возникает и большее число очагов. В результате этого резко ускоряются химические реакции и образование новой смеси; скорости тепловыделения и нарастания давлений могут оказаться слишком большими, а сгорание будет характеризоваться как «жесткое».
Снижение температуры и давления заряда в конце сжатия может быть следствием засорения воздушного фильтра, закоксовывания клапанов и щелей газораспределительных органов, потери плотности клапанов и поршневых колец, изменения фаз газораспределения, попадания масла в воздух.