Как собрать реактивный двигатель для авиамодели
Реактивный двигатель своими руками
Бесклапанный ПуВРД — удивительная конструкция. В ней нет движущихся частей, компрессора, турбины, клапанов. Простейший ПуВРД может обойтись даже без системы зажигания. Этот двигатель способен работать практически на чем угодно: замените баллон с пропаном канистрой с бензином — и он продолжит пульсировать и создавать тягу. К сожалению, ПуВРД оказались несостоятельными в авиации, но в последнее время их всерьез рассматривают как источник тепла при производстве биотоплива. И в этом случае двигатель работает на графитовой пыли, то есть на твердом топливе.
Наконец, элементарный принцип работы пульсирующего двигателя делает его относительно безразличным к точности изготовления. Поэтому изготовление ПуВРД стало излюбленным занятием для людей, неравнодушных к техническим хобби, в том числе авиамоделистов и начинающих сварщиков.
Несмотря на всю простоту, ПуВРД — это все-таки реактивный двигатель. Собрать его в домашней мастерской весьма непросто, и в этом процессе немало нюансов и подводных камней. Поэтому мы решили сделать наш мастер-класс многосерийным: в этой статье мы поговорим о принципах работы ПуВРД и расскажем, как изготовить корпус двигателя. Материал в следующем номере будет посвящен системе зажигания и процедуре запуска. Наконец, в одном из последующих номеров мы обязательно установим наш мотор на самодвижущееся шасси, чтобы продемонстрировать, что он действительно способен создавать серьезную тягу.
От русской идеи до немецкой ракеты
Собирать пульсирующий реактивный двигатель особенно приятно, зная, что впервые принцип действия ПуВРД запатентовал российский изобретатель Николай Телешов еще в 1864 году. Авторство первого действующего двигателя также приписывается россиянину — Владимиру Караводину. Высшей точкой развития ПуВРД по праву считается знаменитая крылатая ракета «Фау-1», состоявшая на вооружении армии Германии во время Второй мировой войны.
Конечно же, речь идет о клапанных пульсирующих двигателях, принцип действия которых понятен из рисунка. Клапан на входе в камеру сгорания беспрепятственно пропускает в нее воздух. В камеру подается топливо, образуется горючая смесь. Когда свеча зажигания поджигает смесь, избыточное давление в камере сгорания закрывает клапан. Расширяющиеся газы направляются в сопло, создавая реактивную тягу. Движение продуктов сгорания создает в камере технический вакуум, благодаря которому клапан открывается, и в камеру всасывается воздух.
В отличие от турбореактивного двигателя, в ПуВРД смесь горит не непрерывно, а в импульсном режиме. Именно этим объясняется характерный низкочастотный шум пульсирующих моторов, который делает их неприменимыми в гражданской авиации. С точки зрения экономичности ПуВРД также проигрывают ТРД: несмотря на впечатляющее отношение тяги к массе (ведь у ПуВРД минимум деталей), степень сжатия в них достигает от силы 1,2:1, поэтому топливо сгорает неэффективно.
Зато ПуВРД бесценны как хобби: ведь они могут обходиться вообще без клапанов. Принципиально конструкция такого двигателя представляет собой камеру сгорания с подсоединенными к ней входной и выходной трубами. Входная труба гораздо короче выходной. Клапаном в таком двигателе служит не что иное, как фронт химических превращений.
Горючая смесь в ПуВРД сгорает с дозвуковой скоростью. Такое горение называется дефлаграцией (в отличие от сверхзвукового — детонации). При воспламенении смеси горючие газы вырываются из обеих труб. Именно поэтому и входная, и выходная трубы направлены в одну сторону и сообща участвуют в создании реактивной тяги. Но за счет разницы длин в тот момент, когда давление во входной трубе падает, по выходной еще движутся выхлопные газы. Они создают разрежение в камере сгорания, и через входную трубу в нее затягивается воздух. Часть газов из выходной трубы также направляется в камеру сгорания под действием разрежения. Они сжимают новую порцию горючей смеси и поджигают ее.
Реактивный двигатель своими руками.
А мне летать охота!
реактивный двигатель своими руками 2014 в картинках
4. «бульбулятор» [highlight]смотреть[/highlight] http://www.youtube.com/watch?v=7HA4WpsQCNA
[highlight]обратить внимание на вихрь на входе в выходную трубку[/highlight]
5. корпус без турбины
7. реактивный двигатель
Руслан 7000
Старейший участник
Очень интересно. Габариты минимальные.
Единственный вопрос по подшипнику (как так-то(!)).
И небольшой «рац». По поводу подачи топлива. Нельзя ли его подавать немного раньше (сразу после нагнетающих лопаток).
В этом случае время прохода увеличится и вроде как больше топлива можно подавать.
На вихрь внимание обратил но не понял. Зачем он там.
Alex_520
Руслан 7000
Старейший участник
Alex_520
Вложения
А мне летать охота!
спасибо, знал что не обидите
жду мнение и подзатыльников от других
А мне летать охота!
На вихрь внимание обратил но не понял. Зачем он там.
[highlight]Вихрь[/highlight] «упорядочивает» горючие газы, а значит [highlight]ускоряет[/highlight]
Alex_520
«Свиристелка» одноконтурная ещё та получится. С удельными расходами 1 кг топлива на 1 кг тяги в час. Дорогое удовольствие для СЛА, однако.
Тогда уж лучше установить ещё одну свободную турбину на выходе и через редуктор на воздушный винт её завязать. Можно конструктивно в виде двухвального движка оформить, где внутренний вал будет соединять свободную турбину с редуктором воздушного винта в носовом обтекателе коробки приводов.
Экономика движка заведомо выше получится. А размеры вырастут незначительно.
Хотя более выгодную схему турбовального ТВД чем РТ-6А ещё никто не придумал
А мне летать охота!
Спасибо за внимание!
вот учел замечания и внес.
А мне летать охота!
согласен. но не так как прямоточный.
Предполагаю, что «игра» размерами и соотношений различных частей, даст тот или иной нужный результат.
А мне летать охота!
Руслан 7000
Старейший участник
. нормальненькая соль. (больше на цианид похожа)
В бумажную трубочку то ведь нам не тяжело ртом просто так подуть.
. а потом поставим простейший завихритель в трубочку (чтоб эксперимент был уже совсем «чистым» даже можно немного её увеличить ровно на толщину стенок завихрителя) и подуем ещё раз. (не думаю что дуть вихрём по трубке легче станет)
Завихритель это тормоз. В некоторых случаях он полезен но в данном двигателе он на мой взгляд не нужен.
(ну или вы заметили то что не вижу я (а я там ничего не вижу))
Она вообще для охлаждения была придумана.
Руслан 7000
Старейший участник
Alex_520
Начните хотя бы с того, какой результат в итоге этого конструирования хотите получить Вы сами: удельные массы, удельные расходы топлива, мощностной диапазон, удобства изготовления, удобства технического обслуживания, регулировок, настроек, высотность и пр. и пр. и пр.
Идея ради самой идеи неинтересна большинству потребителей, увы!
Руслан 7000
Старейший участник
Alex_520
МозгоЧины
#самоделки #инструкции #ремонт_техники #изобретения
МозгоЧины
#самоделки #инструкции #ремонт_техники #изобретения
Реактивный двигатель своими руками
Реактивный двигатель своими руками
Предлагаю вниманию мозгочинов статью о том, как сделать реактивный двигатель своими руками.
Внимание! Строительство собственного реактивного двигателя может быть опасным. Настоятельно рекомендуем принять все необходимые меры предосторожности при работе с поделкой, а также проявлять крайнюю осторожность при работе с инструментами. В самоделке заложены экстремальные суммы потенциальной и кинетической энергии (взрывоопасное топливо и движущие части), которые могут нанести серьёзные травмы во время работы газотурбинного двигателя. Всегда проявляйте осторожность и благоразумие при работе с двигателем и механизмами и носите соответствующую защиту глаз и слуха. Автор не несёт ответственности за использование или неправильную трактовку информации, содержащейся в настоящей статье.
Шаг 1: Прорабатываем базовую конструкцию двигателя
Начнём процесс сборки двигателя с 3Д моделирования. Изготовление деталей с помощью ЧПУ станка значительно облегчает процесс сборки и уменьшает количество часов, которые будут потрачены на подгонку деталей. Главное преимущество при использовании 3D процессов – это способность видеть, как детали будут взаимодействовать вместе до того момента, как они будут изготовлены.
Если вы хотите изготовить действующий двигатель, обязательно зарегистрируйтесь на форумах соответствующей тематики. Ведь компания единомышленников значительно ускорить процесс изготовления самоделки и значительно повысит шансы на удачный результат.
Шаг 2:
Будьте внимательны при выборе турбокомпрессора! Вам нужен большой «турбо» с одной (не разделенной) турбиной. Чем больше турбокомпрессор, тем больше будет тяга готового двигателя. Мне нравятся турбины с крупных дизельных двигателей.
Как правило, важен не столько размер всей турбины, как размер индуктора. Индуктор – видимая область лопаток компрессора.
Турбокомпрессор на картинке – Cummins ST-50 с большого 18 колесного грузовика.
Шаг 3: Вычисляем размер камеры сгорания
В шаге приведено краткое описания принципов работы двигателя и показан принцип по которому рассчитываются размеры камеры сгорания (КС), которую необходимо изготовить для реактивного двигателя.
В камеру сгорания (КС) поступает сжатый воздух (от компрессора), который смешивается с топливом и воспламеняется. «Горячие газы» выходят через заднюю часть КС перемещаясь по лопастям турбины, где она извлекает энергию из газов и преобразует её в энергию вращения вала. Этот вал крутит компрессор, что прикреплён к другому колесу, что выводит большую часть отработанных газов. Любая дополнительная энергия, которая остаётся от процесса прохождения газов, создаёт тягу турбины. Достаточно просто, но на самом деле немного сложно всё это построить и удачно запустить.
Камера сгорания изготовлена из большого куска стальной трубы с крышками на обеих концах. Внутри КС установлен рассеиватель. Рассеиватель – эта трубка, что сделана из трубы меньшего диаметра, которая проходит через всю КС и имеет множество просверленных отверстий. Отверстия позволяют сжатому воздуху заходить в рабочий объём и смешиваться с топливом. После того, как произошло возгорание, рассеиватель снижает температуру воздушного потока, который входит в контакт с лопастями турбины.
Для расчета размеров рассеивателя просто удвойте диаметр индуктора турбокомпрессора. Умножьте диаметр индуктора на 6, и это даст вам длину рассеивателя. В то время как колесо компрессора может быть 12 или 15 см в диаметре, индуктор будет значительно меньше. Индуктор из турбин (ST-50 и ВТ-50 моделей) составляет 7,6 см в диаметре, так что размеры рассеивателя будут: 15 см в диаметре и 45 см в длину. Мне хотелось изготовить КС немного меньшего размера, поэтому решил использовать рассеиватель диаметром 12 см с длиной 25 см. Я выбрал такой диаметр, прежде всего потому, что размеры трубки повторяют размеры выхлопной трубы дизельного грузовика.
Поскольку рассеиватель будет располагаться внутри КС, рекомендую за отправную точку взять минимальное свободное пространство в 2,5 см вокруг рассеивателя. В моём случае я выбрал 20 см диаметр КС, потому что она вписывается в заранее заложенные параметры. Внутренний зазор будет составлять 3,8 см.
Теперь у вас есть примерные размеры, которые уже можно использовать при изготовлении реактивного двигателя. Вместе с крышками на концах и топливными форсунками – эти части в совокупности будут образовывать камеру сгорания.
Шаг 4: Подготовка торцевых колец КС
Закрепим торцевые кольца с помощью болтов. С помощью данного кольца рассеиватель будет удерживаться в центра камеры.
Наружный диаметр колец 20 см, а внутренние диаметры 12 см и 0,08 см соответственно. Дополнительное пространство (0,08 см) облегчит установку рассеивателя, а также будет служить в качестве буфера для ограничения расширений рассеивателя (во время его нагрева).
Кольца изготавливаются из 6 мм листовой стали. Толщина 6 мм позволит надежно приварить кольца и обеспечить стабильную основу для крепления торцевых крышек.
12 отверстий для болтов, которые расположены по окружности колец, обеспечат надежное крепление при монтаже торцевых крышек. Следует приварить гайки на заднюю часть отверстий, чтобы болты могли просто ввинчиваться прямо в них. Всё это придумано только из-за того, что задняя часть будет недоступна для гаечного ключа. Другой способ– это нарезать резьбу в отверстиях на кольцах.
Шаг 5: Привариваем торцевые кольца
Для начала нужно укоротить корпус до нужной длины и выровнять всё должным образом.
Начнём с того, что обмотаем большой лист ватмана вокруг стальной трубы так, чтобы концы сошлись друг с другом и бумага была сильно натянута. Из него сформируем цилиндр. Наденьте ватман на один конец трубы так, чтобы края трубы и цилиндра из ватмана заходили заподлицо. Убедитесь, что там будет достаточно места (чтобы сделать отметку вокруг трубы), так чтобы вы могли сточить металл заподлицо с отметкой. Это поможет выровнять один конец трубы.
Далее следует измерить точные размеры камеры сгорания и рассеивателя. С колец, которые будут приварены, обязательно вычтите 12 мм. Так как КС будет в длину 25 см, учитывать стоит 24,13 см. Поставьте отметку на трубе, и воспользуйтесь ватманом, чтобы изготовить хороший шаблон вокруг трубы, как делали раньше.
Отрежем лишнее с помощью болгарки. Не волнуйтесь о точности разреза. На самом деле, вы должны оставить немного материала и очистить его позже.
Сделаем скос с обеих концов трубы(чтобы получить хорошее качество сварного шва). Воспользуемся магнитными сварочными зажимами, чтобы отцентровать кольца на концах трубы и убедиться, что они находятся на одном уровне с трубой. Прихватите кольца с 4-х сторон, и дайте им остыть. Сделайте сварной шов, затем повторите операции с другой стороны. Не перегревайте металл, так вы сможете избежать деформации кольца.
Когда оба кольца приварены, обработайте швы. Это необязательно, но это сделает КС более эстетичной.
Шаг 6: Изготавливаем заглушки
Для завершения работ по КС нам понадобится 2 торцевые крышки. Одна крышка будет располагаться на стороне топливного инжектора, а другая будет направлять горячие газы в турбину.
Изготовим 2 пластины того же диаметра что и КС (в моём случае 20,32 см). Просверлите 12 отверстий по периметру для болтов и выровняйте их с отверстиями на конечных кольцах.
На крышке инжектора нужно сделать только 2 отверстия. Одно будет для топливного инжектора, а другое для свечи зажигания. В проекте используется 5 форсунок ( одна в центре и 4 вокруг неё). Единственное требование – инжекторы должны располагаться таким образом, чтобы после окончательной сборки они оказались внутри рассеивателя. Для нашей конструкции – это означает, что они должны помещаться в центре 12 см круга в середине торцевой крышки. Просверлим 12 мм отверстия для монтажа форсунок. Сместимся чуть-чуть от центра, чтобы добавить отверстие для свечи зажигания. Отверстие должно быть просверлено для 14 мм х 1,25 мм нити, которая будет соответствовать свече зажигания. Конструкция на картинке будет иметь 2 свечи (одна про запас, если первая выйдет из строя).
Из крышки инжектора торчат трубы. Они изготовлены из труб диаметром 12 мм (внешний) и 9,5 мм (внутренний диаметр). Их обрезают до длины 31 мм, после чего на краях делают скосы. На обеих концах будет 3 мм резьба. Позже они будут свариваться вместе с 12 мм трубками, выступающими с каждой стороны пластины. Подача топлива будет осуществляться с одной стороны а инжекторы будут вкручены с другой.
Для того, чтобы сделать вытяжной колпак, нужно будет вырезать отверстие для «горячих газов». В моем случае, размеры повторяют размеры входного отверстия турбины. Небольшой фланец должен иметь те же размеры, что и открытая турбина, а также, плюс четыре отверстия для болтов, чтобы закрепить его на ней. Торцовый фланец турбины может быть сварен вместе из простого прямоугольного короба, который будет идти между ними.
Переходный изгиб следует сделать из листовой стали. Свариваем детали вместе. Необходимо, чтобы сварные швы шли по наружной поверхности. Это нужно для того, чтобы воздушный поток не имел никаких препятствий и не создавалась турбулентность внутри сварных швов.
Шаг 7: Собираем всё вместе
Начните с закрепления фланца и заглушек (выпускного коллектора) на турбине. Тогда закрепите корпус камеры сгорания и, наконец, крышку инжектора основного корпуса. Если вы всё сделали правильно, то ваша поделка должна быть похожа на вторую картинку ниже.
Важно отметить, что турбинные и компрессорные секции можно вращать относительно друг друга, ослабив зажимы в середине.
Исходя из ориентации частей, нужно будет изготовить трубу, которая соединит выпускное отверстие компрессора с корпусом камеры сгорания. Эта труба должна быть такого же диаметра, как выход компрессора, и в конечном счёте крепиться к нему шлангом соединителем. Другой конец нужно будет соединить заподлицо с камерой сгорания и приварить его на место, как только отверстие было обрезано. Для своей камеры, я использовать кусок согнутой 9 см выхлопной трубы. На рисунке ниже показан способ изготовления трубы, которая предназначена для замедления скорости воздушного потока перед входом в камеру сгорания.
Для нормальной работы нужна значительная степень герметичности, проверьте сварные швы.
Шаг 8: Изготавливаем рассеиватель
Рассеиватель позволяет воздуху входить в центр камеры сгорания, при этом сохранять и удерживать пламя на месте таким образом, чтобы оно выходило в сторону турбины, а не в сторону компрессора.
Отверстия имеют специальные названия и функции (слева направо). Небольшие отверстия в левой части являются основными, средние отверстия являются вторичными, и самые большие на правой стороне являются третичными.
Чтобы сделать процесс расчета отверстия легким, ниже представлена программа, что будет делать работу за вас.
Поскольку наша камера сгорания 25 см в длину, необходимо будет сократить рассеиватель до этой длины. Я хотел бы предложить сделать её почти на 5 мм короче, чтобы учесть расширение металла, во время нагрева. Рассеиватель по-прежнему будет иметь возможность зажиматься внутри конечных колец и «плавать» внутри них.
Шаг 9:
Теперь у вас есть готовый рассеиватель, откройте корпус КС и вставьте его между кольцами, пока он плотно не войдет. Установите крышку инжектора и затяните болты.
Для топливной системы необходимо использовать насос, способный выдавать поток высокого давления (по меньшей мере 75 л/час). Для подачи масла нужно использовать насос способный обеспечить давление в 300 тис. Па с потоком 10 л/час. К счастью, один и тот же тип насоса можно использовать для обеих целей. Мое предложение Shurflo № 8000-643-236.
Представляю схему для топливной системы и системы подачи масла для турбины.
Для надежной работы системы рекомендую использовать систему регулируемого давления с установкой обходного клапана. Благодаря ему поток, который прокачивают насосы всегда будет полным, а любая неиспользованная жидкость будет возвращена в бак. Эта система поможет избежать обратного давления на насос (увеличит срок службы узлов и агрегатов). Система будет работать одинаково хорошо для топливных систем и системы подачи масла. Для масляной системы вам нужно будет установить фильтр и масляный радиатор (оба из них будут установлены в линию после насоса, но перед перепускным клапаном).
Убедитесь, что все трубы, идущие к турбине выполнены из «жесткого материала». Использование гибких резиновых шлангов может закончиться катастрофой.
Ёмкость для топлива может быть любого размера, а масленый бак должен удерживать по меньшей мере 4 л.
В своей масляной системе использовал полностью синтетическое масло Castrol. Оно имеет гораздо более высокую температуру воспламенения, а низкая вязкость поможет турбине в начале вращения. Для снижения температуры масла, необходимо использовать охладители.
Что касается системы зажигания, то подобной информации достаточно в интернете. Как говорится на вкус и цвет товарища нет.
Далее установим двигатель на испытательный стенд.
Шаг 10:
Для начала поднимите давление масла до минимума 30 МПа. Наденьте наушники и продуйте воздух через двигатель воздуходувкой. Включите цепи зажигания и медленно подавайте топливо, закрывая игольчатый клапан на топливной системе до тех пор, пока не услышите «поп», когда камера сгорания заработает. Продолжайте увеличивать подачу топлива, и вы начнете слышать рёв своего нового реактивного двигателя.