Каков принцип действия трехфазного асинхронного двигателя кратко
Асинхронный двигатель принцип работы
Среди разнообразия выпускаемых на сегодняшний день типов электрических моторов большое распространение получили асинхронные двигатели. Их мощность и эффективность обеспечивает использование в деревообрабатывающей и металлообрабатывающей промышленности, в насосных агрегатах, на фабриках, в станках и ручном электрическом инструменте.
Асинхронный двигатель: что это
Асинхронный двигатель – это асинхронная электрическая машина, применяемая для преобразования электрической энергии в механическую. Асинхронный дословно означает неодновременный – здесь имеется в виду, что у асинхронного двигателя магнитное поле всегда имеет большую частоту вращения, чем ротор, который словно пытается его догнать. Работают эти машины от сетей с переменным током.
Любой асинхронный двигатель состоит из двух ключевых составляющих: ротора и статора. Эти части не контактируют между собой и отделены друг от друга воздушным зазором, в котором формируется подвижное магнитное поле.
Статор асинхронной машины состоит из следующих частей:
Конструкция ротора состоит из основного блока с вентиляционной крыльчаткой, опирающегося на подшипники. Связь ротора с приводимым в движение механизмом обеспечивается с помощью прямого подключения, редукторов или других способов передачи механической энергии. В асинхронных двигателях используются два вида роторов:
Рекомендуем посмотреть это видео. Оно хоть и старое, но интересное и познавательное. Позволит закрыть непонятные моменты.
Трехфазный асинхронный двигатель. Принцип работы
Принцип действия асинхронного двигателя заключается во взаимном расположении обмоток и трехфазном напряжении, что приводит к возникновению вращающегося магнитного поля, которое и выступает движущей силой.
Подробнее говоря, при подаче питания на первичную обмотку, на фазах образуются три магнитных потока, изменяющихся в зависимости от частоты входного напряжения. Они смещены между собой не только в пространстве, но и во времени, благодаря чему и появляется вращающийся магнитный поток.
Во время вращения результирующий поток создает ЭДС в роторных проводниках. По причине того, что обмотка ротора представляет собой замкнутую цепь, в ней создается ток, создающий пусковой момент в направлении вращения магнитного поля статора. Это приводит к вращению ротора после превышения пусковым моментом его тормозного момента. Наблюдаемое в этот момент явление называется скольжением — величиной, показывающей в виде процентов соотношение частоты вращения магнитного поля к частоте вращения ротора.
(n1 – частота магнитного поля статора; n2 – частота вращения ротора)
Скольжение является очень важным параметром. На старте его величина всегда равна 1 и, естественно, становится меньше по мере увеличения разности между n1 и n2, что сопровождается также уменьшением электродвижущей силы и вращающего момента. Во время работы на холостом ходу скольжение минимально и растет по мере увеличения статического момента. Достигнув критического скольжения (обозначается как sкр), может спровоцировать опрокидывание двигателя. После уравновешивания тормозного и электромагнитного момента изменения величин прекращаются.
Таким образом, принцип действия асинхронного двигателя основывается на взаимодействии магнитного поля ротора, находящегося во вращении, и токов, наведенных в роторе этим же полем. При этом обязательным условием возникновения вращающего момента является разница частот вращения полей.
Однофазный асинхронный двигатель
Фактически, любой асинхронный электродвигатель является трехфазным и предусматривает подключение к трехфазной сети с напряжением 380 В. Однофазным или двухфазным его называют при подключении к однофазной электросети с напряжением 200 В, когда питание подается лишь на две обмотки. В такой схеме на основную рабочую обмотку подается чистая фаза от сети, а на другую питание идет через фазосдвигающий элемент, как правило, конденсатор. Такая схема позволяет создать необходимую индукцию для смещения ротора и запустить асинхронный двигатель от однофазной сети. Для дальнейшей его работы даже необязательно, чтобы пусковая обмотка (которую подключают через конденсатор) оставалась под напряжением.
Дело в том, что трехфазный асинхронный двигатель продолжает функционировать (под малой нагрузкой) даже если во время работы от него отключить подачу энергии по одному из питающих проводов, сымитировав таким образом работу от однофазной сети. Это обусловлено тем, что результирующее магнитное поле сохраняет вращение.
Двухфазный асинхронный двигатель
Создать вращающееся магнитное поле можно и при использовании двухфазных обмоток. Для обеспечения работоспособности схемы фазы обмоток необходимо расположить с 90˚ смещением друг от друга. При их питании токами, которые смещены по фазе на 90˚, возникает вращающееся магнитное поле, как и в трехфазной машине.
Асинхронный двухфазный электродвигатель приводится в движение за счет токов, образуемых при взаимодействии результирующего поля с роторными стержнями. Он ускоряется до того момента, пока не будет достигнута предельная скорость его вращения. Для питания такого двигателя от электросети однофазного тока необходимо создать сдвиг по фазе на одной из обмоток. Для этого применяются конденсаторы необходимой ёмкости.
На сегодняшний день все большее применение находят двухфазные асинхронных двигатели с полым алюминиевым ротором. Вращение ему придают вихревые токи, образованные внутри цилиндра, при взаимодействии с вращающимся магнитным полем.
Инерционный момент ротора наделяет двигатель хорошими характеристиками для использования в некоторых специализированных отраслях, как, например, системы, регулирующие работу мостовых и компенсационных схем. Одна из обмоток в них подключается к питающей сети через конденсатор, а через вторую проходит управляющее напряжение.
Схемы подключения
Для того чтобы подключить трехфазный асинхронный двигатель используют несколько различных схем, но чаще всего применяются «треугольник» и «звезда».
Треугольник
Преимущество данной схемы заключается в том, что при подключении согласно ей трехфазный двигатель может развивать наибольшую номинальную мощность. Для этого обмотки соединяются по принципу конец-начало, что на схематичном изображении похоже на треугольник, однако в виде треугольника понять что к чему, не всегда удобно. По этому предлагаем для анализа схему снизу, а затем фотографию уже в сборе (еще ниже).
В трехфазных электрических сетях величина линейного напряжения между выводами обмоток составляет 380 В. При этом нет необходимости создания рабочего нуля. Важно отметить, что в такой схеме может возникнуть большой пусковой ток, значительно перегружающий проводку.
Звезда
Этот способ подключения является наиболее используемым в сетях с трехфазным током 380 В. Название схемы связано с тем, что концы обмоток соединяются в одной точке, словно звездные лучи. Начала обмоток подключаются посредством аппаратуры коммутации к фазным проводникам. В такой конструкции линейной напряжение между начал составляет 380 В, а между местом соединения и подключения проводника – 200 В. Ниже представлена схема, а еще ниже уже фотография в собранном виде.
Трехфазный двигатель для 380 В сетей, подключенный таким образом, не способен развить максимальную силу из-за того, что напряжение на каждой обмотке составляет 220 В. В свою очередь, такая схема предотвращает возникновение перегрузок по току, чем обеспечивается плавный пуск.
Возможность подключения двигателя тем или иным способом, как правило, указывается на его табличке. Значок Y означает «звезду», а ∆ — «треугольник». Определить схему на уже подключенной машине можно по виду обмоток – одна двойная перемычка между ними говорит, что использована «звезда» (первое фото снизу), а если между клеммами обмоток видно три перемычки – «треугольник» (первое фото сверху).
В случае, когда необходимо запустить трехфазный асинхронный электродвигатель в обратном направлении вращения, следует поменять два питающих провода от трехфазного источника местами.
Функциональные и эксплуатационные особенности
Характерные преимущества асинхронных двигателей:
Среди недостатков можно отметить:
Как производятся расчеты
Для того чтобы вычислить частоту вращения двигателя следует воспользоваться определенной нам ранее формулой скольжения:
И выразить из нее скорость вращения ротора:
В качестве примера возьмем двигатель модели АИР71А4У2 мощностью в 550 Вт с 4 парами полюсов и частотой вращения ротора 1360 об/мин.
При питании от сети с частотой 50 Гц статор будет вращаться со скоростью:
Таким образом, величина скольжения электродвигателя составляет:
И, наконец, прекрасное, хотя и устаревшее, видео рекомендуемое всем для одноразового просмотра.
Асинхронный электродвигатель: принцип работы и устройство
Самым эффективным устройством, превращающим электрическую энергию в механическую, является асинхронный двигатель, изобретенный инженером Доливо-Добровольским в конце 19 века. Учитывая возрастающий интерес современников к разработке и сборке станков, самодвижущихся аппаратов и прочих механизмов, мы постараемся объяснить, как работает асинхронный электродвигатель, чтобы вы могли понять принцип его действия и результативно его использовать.
Устройство асинхронного электродвигателя
В его конструкцию входят следующие элементы:
Схему асинхронного двигателя с указанием его деталей легко найти в интернете или в пособиях.
Принцип работы асинхронного двигателя
Принцип действия асинхронного электродвигателя заложен в его названии (не синхронный). То есть статор и ротор при включении создают вращающиеся с разной частотой магнитные поля. При этом частота вращения магнитного поля ротора всегда меньше частоты вращения магнитного поля статора.
Чтобы более наглядно представить себе этот процесс, возьмите постоянный магнит и покрутите его вокруг своей оси возле медного диска. Диск с небольшим отставанием начнет вращаться вслед за магнитом. Дело в том, что при вращении магнита в структуре диска возбуждаются токи Фуко (индукционные токи), движущиеся по замкнутому кругу. По сути они являются токами короткого замыкания, разогревающими металл. В диске «зарождается» собственное магнитное поле, в дальнейшем взаимодействующее с полем магнита.
В асинхронном двигателе для получения вращающегося поля используются обмотки статора. Магнитный поток, образованный ими, создает ЭДС в проводниках ротора. При взаимодействии магнитного поля статора и индуцируемого тока в обмотке ротора создается электромагнитная сила, приводящая во вращение вал электродвигателя.
Пошагово процесс выглядит следующим образом:
То есть ротор всегда медленнее магнитного поля статора, что и обеспечивает асинхронность.
Поскольку ток в роторе индуцируется бесконтактно, отпадает необходимость установки скользящих контактов, что делает асинхронные двигатели более надежными и эффективными. Изменяя направление тока в одной из обмоток (для этого нужно поменять фазы на клеммах), вы можете «заставить» мотор вращаться в ту или другую сторону.
Направление электромагнитной силы легко определить, вспомнив школьный курс физики и воспользовавшись «правилом левой руки».
На частоту вращения магнитного поля статора влияет частота питающей сети и число пар полюсов. Поскольку число пар полюсов зависит от типа двигателя и остается неизменным, то, если вы хотите изменить частоту вращения поля, необходимо изменить частоту питающей сети с помощью преобразователя.
Преимущества асинхронных двигателей
Благодаря тому, что устройство и принцип работы асинхронного электродвигателя достаточно просты, он обладает массой преимуществ и широко применяется во всех сферах народного хозяйства и в быту. Двигатели этого типа характеризуются:
Изобретение асинхронного электродвигателя было значимым вкладом в развитие науки, промышленности и сельского хозяйства. С ним наша жизнь стала более комфортной.
Каков принцип действия трехфазного асинхронного двигателя кратко
Асинхронные машины относятся к классу электромеханических преобразователей, т.е. преобразователей электрической энергии в механическую или механической в электрическую. В первом случае они называются двигателями, а во втором – генераторами. Все электрические машины обладают свойством обратимости и могут осуществлять преобразование энергии в обоих направлениях, поэтому при изучении процессов в машинах пользуются понятиями двигательного и генераторного режимов. Однако при разработке и изготовлении машины оптимизируются для условий работы в одном из режимов и используются в соответствии с назначением. Асинхронные машины не являются исключением из этого правила, но асинхронные генераторы значительно уступают синхронным по многим параметрам и редко используются на практике, в то время как асинхронные двигатели являются самыми распространёнными электромеханическими преобразователями. Суммарная мощность асинхронных двигателей составляет более 90% общей мощности всех существующих двигателей, поэтому в данном курсе мы ограничимся рассмотрением только этого типа машин.
Асинхронные двигатели относятся к бесколлекторным машинам переменного тока или машинам с вращающимся магнитным полем. Название асинхронные (несинхронные) объясняется тем, что в статическом режиме работы скорость вращения ротора (вращающейся части) двигателя отличается от скорости вращения магнитного поля, т.е. ротор и поле вращаются несинхронно.
Причиной широкого распространения асинхронных двигателей является их предельная простота, надёжность и экономичность. Конструкция асинхронных двигателей не претерпела существенных изменений с 1889 года, когда эти двигатели были изобретены М.О. Доливо-Добровольским. Можно сказать, что асинхронные двигатели совместно с синхронными генераторами и трёхфазными линиями передачи и распределения электрической энергии образуют систему передачи механической энергии на расстояние.
В последнее время в связи с появлением полупроводниковых преобразователей частоты для питания асинхронных двигателей область их применения существенно расширилась. Они стали широко применяться в высокоточных приборных приводах там, где ранее использовались в основном двигатели постоянного тока.
Работа асинхронного двигателя основана на взаимодействии электрического тока, протекающего в обмотке ротора, с вращающимся магнитным полем, возбуждаемым обмотками статора. Статор (неподвижная часть машины) асинхронного двигателя состоит из корпуса, сердечника и обмоток. Корпус является конструктивным элементом машины и практически не участвует в электромагнитных процессах. Сердечник статора изготавливается из листов электротехнической стали и представляет собой полый цилиндр, на внутренней поверхности которого имеются пазы для укладки обмоток. Конструктивная схема сердечника статора без обмоток и с сосредоточенными обмотками показана на рис. 1.
Рис. 1 Конструктивная схема статора асинхронного двигателя
Оси трёх фазных обмоток статора смещены в пространстве по окружности пакета на 120°, а пазы с концами обмоток (X, Y, Z) отстоят от пазов, в которые уложены их начала (A, B, C) на 180°.
При подключении обмоток к трёхфазному источнику питания, протекающие в них токи возбуждают магнитные поля, оси которых совпадают с осями обмоток, а максимальные значения индукции изменяются во времени по синусоидальным законам.
Поля отдельных обмоток суммируются в пространстве внутри сердечника и образуют единое магнитное поле статора. Картину этого поля схематично можно проследить по нескольким точкам на рис. 2.
Рис. 2 Получение вращающегося магнитного поля статора асинхронного двигателя
Обозначим положительное направление тока в обмотке знаком «+» в точке её начала и знаком «•» в точке конца. Тогда для состояния 1 в пазах сердечника A, Y и C будет одно направление тока в проводниках, а в пазах Z, B и X другое. Общая картина магнитного поля для текущего момента будет соответствовать двум магнитным потокам, охватывающим пазы с одинаковыми направлениями токов, поэтому ось поля для состояния «1» будет направлена под углом 30° к оси AX. Такими же построениями можно определить, что через 1/6 часть периода магнитное поле сместится на 60° в положительном направлении, а за один период частоты сети – на 360°.
Магнитное поле вращается внутри пакета статора с угловой частотой
определяемой частотой источника питания статорных обмоток f1. Годограф вектора индукции представляет собой окружность, поэтому поле называется круговым.
Направление вращения поля определяется порядком чередования фаз. При переключении любой пары обмоток направление вращения поля меняется на противоположное.
Если вдвое увеличить число пазов сердечника и, разделив каждую обмотку на две части, поместить её в пазы так, чтобы начала и концы половин обмоток находились в пазах, смещённых по окружности статора на 90°, то при подключении к сети образуется магнитное поле с двойным числом полюсов (рис. 3).
Рис. 3 Магнитное поле статора асинхронного двигателя с двойным числом полюсов
За один период частоты питания оно будет перемещаться в пространстве на 180°, т.е. частота его вращения будет в два раза меньше. Проведя аналогичные построения картины магнитного поля для обмоток, разделённых на p частей, можно убедиться, что при этом будут возбуждаться поля с числом пар магнитных полюсов равным p и угловая частота вращения поля будет уменьшаться в p раз, т.е.
где ω1 = 2πf1 – частота питающей сети, а p – число пар полюсов магнитного поля.
Традиционно частоту вращения называют скоростью вращения и измеряют во внесистемных единицах – оборотах в минуту. Тогда выражение (1) можно представить в виде
где n1 – скорость вращения магнитного поля в об/мин, а f1 – частота питающей сети в герцах.
При частоте промышленной сети 50 Гц возникает ряд возможных скоростей вращения магнитного поля: 3000, 1500, 1000, 750, 600…об/мин.
Принцип действия асинхронного двигателя показан на рис. 4.
Рис. 4 Принцип действия асинхронного двигателя
На нём круговое вращающееся магнитное поле изображено в виде вращающихся полюсов постоянного магнита. Это представление является полной физической аналогией магнитного поля возбуждаемого обмотками статора и может использоваться всегда для наглядного отображения электромеханического взаимодействия.
Поместим в пространство между полюсами замкнутый проводник в виде прямоугольной рамки, подвешенной на оси OO′, вокруг которой вращается магнитное поле. Движение поля относительно рамки вызывает появление в ней ЭДС, а т.к. рамка замкнута, то под действием ЭДС в ней возникает электрический ток. Рамка с протекающим по ней током испытывает механическое воздействие со стороны магнитного поля, приводящее её во вращение. Воздействие магнитного поля на рамку в виде но только при наличии тока в рамке, который, в свою очередь, возникает в результате того, что магнитное поле движется относительно рамки. При равенстве скоростей вращения Ω1 = Ω, т.е. при синхронном вращении, поле будет неподвижно относительно рамки и не будет создавать вращающего момента, т.к. в рамке не будет индуцироваться ток.
Таким образом, устройство, показанное на рис. 4, работоспособно только при асинхронном движении поля и рамки и является простейшим асинхронным двигателем.
Вращающий момент в модели на рис. 4 можно увеличить, если вместо одной установить на оси несколько рамок. В результате образуется конструкция ротора асинхронного двигателя, состоящая из продольных стержней и замыкающих их по краям колец, называемая «беличья клетка» (рис. 5, а).
Рис. 5 Конструкция короткозамкнутого ротора асинхронного двигателя «беличья клетка»
Электромагнитная сила, создающая вращающий момент, пропорциональна величине магнитной индукции, зависящей, при прочих равных условиях, от магнитных сопротивлений цепи, по которой замыкается магнитный поток. Главной составляющей магнитного сопротивления на пути потока являются воздушные зазоры, поэтому их необходимо заполнить ферромагнетиком. Эту функцию выполняет сердечник ротора (рис. 5, б) Он, также как сердечник статора, изготавливается из листов электротехнической стали, собирается в пакет и напрессовывается на вал. В листах сердечника вырублены отверстия, образующие при сборке пакета продольные каналы, которые заполняются расплавленным алюминием или медью. В результате создаётся обмотка ротора типа «беличья клетка». Ротор такой конструкции называется короткозамкнутым (рис. 5, в) и используется в подавляющем большинстве асинхронных двигателей.
Электрическая энергия в цепь ротора передаётся посредством магнитного поля, поэтому ротор не имеет контактов для подключения к внешним электрическим цепям, что существенно повышает надёжность двигателя и позволяет использовать его в условиях, в которых не могут эксплуатироваться другие типы машин, например, во взрывоопасных помещениях. Скорость вращения короткозамкнутого ротора ограничивается только условиями механической прочности его конструкции и опор, поэтому асинхронные короткозамкнутые двигатели используются в приводах со скоростями вращения до 300000 об/мин.
Более сложную конструкцию имеет так называемый фазный ротор.
Рис. 6 Конструкция фазного ротора асинхронного двигателя
В пазы пакета сердечника этого ротора уложены три фазные об мотки статора (1, рис. 6). Они соединены звездой, а начала обмоток выведены через контактные кольца 2 и щётки 3 и подключены к регулировочным реостатам 4. Асинхронные двигатели с фазным ротором используются в основном в регулируемом приводе подъёмно-транспортных механизмов, но в последнее время их вытесняют из этой области двигатели с короткозамкнутым ротором с питанием от преобразователей частоты.
Каков принцип действия трехфазного асинхронного двигателя кратко
Асинхронный (индукционный) двигатель – механизм, превращающий силу переменного тока в механическую. Под асинхронным подразумевают, что скорость движения магнитной силы статора выше аналогичной величины оборотов ротора.
Для того, чтобы получше представлять, что такое асинхронный двигатель и принцип действия трехфазного асинхронного двигателя, где он используется и как работает, необходимо разобраться в его составных частях и деталях, исследовать технические характеристики. Кроме того, не лишним будет понять, как происходит преобразование силы во время пуска и где используется асинхронный двигатель на практике.
В сегодняшней статье мы попробуем ответить на самые интересные вопросы, связанные с асинхронными двигателями, разобраться в том, что такое устройство однофазного асинхронного двигателя, рассмотрим принципы работы, а также плюсы и минусы данного типа устройств.
Немного истории
Первый подобный механизм электродвигателей появился еще в 1888 году и представил его американский инженер Никола Тесла. Однако, его опытный образец устройства и был не самым удачным, так как был двух фазным или много фазным и рабочие характеристики асинхронного двигателя не удовлетворяли потребителей. Поэтому широкого распространения не получил.
А вот благодаря российскому ученому Михаилу Доливо-Доброволь скому в изобретение удалось вдохнуть новую жизнь. Именно ему принадлежит первенство в деле создания первого в мире трехфазного асинхронного мотора. Такое усовершенствование конструкции стало революционным, так как принцип работы трехфазного асинхронного двигателя позволял использовать для работы всего три провода, а не четыре. Так что для плавного пуска устройства в массовое производство препятствий больше не оставалось.
Сегодня, благодаря своей простоте эти машины получили широкое распространение, а механическая характеристика асинхронного двигателя устраивает всех водителей.
Простота в использовании, принцип действия асинхронного двигателя, легкий пуск, надежность и дешевизна, помогли этим моторам распространиться по всему миру и буквально совершить технический переворот в промышленности.
Принцип работы трехфазного двигателя основан на питании от трех фаз переменного тока в стандартной сети. Для работы ему требуется именно такое электричество и поэтому он назван трех фазным.
Устройство трехфазного двигателя
Любой мотор асинхронного типа, независимо от его мощности и размеров, состоит из одних и тех же частей, механическая характеристика асинхронного двигателя также одна и та же. Главными среди составляющих являются:
Помимо этого, в современных трех фазных двигателях можно найти следующие детали:
Как уже указывалось выше, базовые элементы двигателя — это статор (неподвижная часть) и ротор (подвижная деталь).
Статор выполнен в виде цилиндра, составлен данный элемент из множества металлических, форменных листов. Внутренняя часть создана таким образом, чтобы расположить обмотку. Центры обмоток расположены под углом в 120 градусов, а подключение происходит, исходя из доступного напряжения и двух возможных вариантов: на три или пять контактов.
Принципы, использование которых лежит в работе такого приспособления, как устройство асинхронного двигателя:
Исходя из типа обмотки, ротор может быть короткозамкнутым или фазным.
Короткозамкнутым называют ротор, состоящий из множества стальных частей. Работа асинхронного двигателя с короткозамкнутым ротором заключается в следующем: в специальные пазы заливают алюминий, формирующий сердцевины, крепящиеся с обеих сторон стопорными кольцами, такая конструкция получила название «беличья клетка». Называется так, потому что замкнута накоротко и в ней не может использоваться сопротивление.
Фазным называют ротор, который обмотан по принципу, аналогичному статору, подходящему для трехфазной сети. Края проводки сердцевины замыкают в звезду, а оставшиеся контакты подводят к контактным частям.
Согласно принципу обратимости, любым фазным асинхронным двигателям свойственна возможность работать в качестве двигателя, генератора или электромагнитного тормоза. Электромеханическая характеристика асинхронного двигателя:
Изменение порядка чередования фаз приводит к тому, что магнитное поле и сердцевина вращаются в различные стороны, при этом потребляется как механическая энергия, так и напряжение сети, создавая тормозной момент. Собранная энергия приводит к нагреву машины.
Принцип работы трехфазного двигателя
Принцип работы асинхронного двигателя в следующем: подавая напряжение на статор, в его проводке возникает магнитное воздействие, которая благодаря углу размещения осей обмоток, суммируется и создает итоговый, вращающий магнитный поток.
Вращаясь, он создает в проводниках электродвижущую силу. Обмотка сердцевины, создана таким образом, что при включении в сеть, появляется сила, налаживающаяся на действие статора и создающая движение.
Устройство и принцип действия асинхронного двигателя зависит и от сердцевины. Движение сердцевины происходит, когда магнитная сила статора и пусковой момент преодолевают тормозную мощность ротора и внутренняя часть начинает движение, в этот момент проявляется такой показатель, как скольжение.
Скольжение очень важный параметр. В начале движения ротора оно равно 1, но вместе с ростом частоты движения, наблюдается выравнивание, и как следствие снижаются электродвижущие силы и ток в обмотках, это приводит к снижению вращающего момента.
Существует крайний предел скольжения, превышать это значение не стоит, ведь механизм может «опрокинуться», что приведет к нарушению его нормальной работы. Минимальное скольжение происходит на холостых оборотах мотора, при увеличении момента значение будет расти, до наступления критической отметки.
Во время пуска вектор результирующего магнитного поля неподвижной части плавно вращается с определенной частотой. Через сечение ротора проходит магнитный поток. Электроэнергия, подходящая к двигателю в момент пуска, уходит на перемагничивание статора и ротора.
Стоит заметить, что для электромоторов, в том числе асинхронных свойственно то, что во время пуска в короткий промежуток времени достигается до 150% крутящего момента. Пусковой ток превышает номинальный в 7 раз и из-за этого, в момент пуска падает напряжение во всей электрической сети. Если падение напряжения слишком большое, то даже сам двигатель может не запуститься – таков принцип его действия. Поэтому на практике используют устройство плавного пуска.
Устройство плавного пуска
Устройства плавного пуска асинхронных двигателей имеет свою специфику. Оно используется для плавного пуска или остановки электромагнитных двигателей. Может быть механическим, электромеханичес ким или полностью электронным.
Пусковая характеристика асинхронного двигателя предназначена:
Принцип работы и действия устройства плавного пуска основаны на широкой вариативности переменных. Как следствие, появляются большие возможности для управления режимами работы.
Хорошие и плохие свойства асинхронных моторов
Асинхронный двигатель принцип работы и устройство имеет достоинства и недостатки. Трансформаторы, внутри которых находится вращающийся ротор, используемый для работы двигателя, получили обширное применение так как принцип действия у них простой и понятный, а само устройство работает бесперебойно. Однако и короткозамкнутым и фазным устройствам свойственны определенные недостатки. Причем именно принцип их действия лежит в основе данных минусов.
Стоит отметить, что в настоящее время, отдается предпочтение устройствам с короткозамкнутым ротором. А вот устройства, в которых ротор фазный используются в редких случаях, как правило, когда достигается большая мощность.