Контроллеры и шина фото
Для чего нужен SM-контроллер шины
SM-контроллер шины – это вспомогательный интерфейс, задачей которого является сбор разнообразных данных. Например, характеристик блоков памяти или температуры корпуса центрального процессора. Обычно SM-контроллер шины служит для управления «интеллектуальными» блоками источников бесперебойного питания персонального компьютера. Однако чаще всего операционная система ХР самостоятельно способна справиться с подобным процессом, так что использование данного контроллера может стать формальным.
Ошибка диспетчера устройств
Часто после переустановки операционной системы персонального компьютера диспетчер устройств определяет, что SM-контроллер шины работает некорректно. Это довольно распространенная проблема. Для того чтобы все оборудование работало как следует, требуется установка драйверов для этого устройства. Неопытные пользователи ПК начинают задавать на форумах вопросы, чтобы понять, что же представляет собой SM-контролер шины. А вот найти грамотный ответ не всегда получается. Постоянные посетители форумов дают противоречивые ответы: одни утверждают, что такого оборудования нет, это ошибка системы, и можно пренебречь установкой драйверов, а их оппоненты, наоборот, настаивают на исключительной важности контроллера. На самом деле, SM-контроллер шины существует, но имеет ли он серьезное значение для полноценного функционирования персонального компьютера или нет? Попробуем разобраться.
Контроллер шины: назначение
Если говорить простым языком, то данное оборудование входит в состав системной платы любого современного ПК или ноутбука. Контроллер необходим для обеспечения работоспособности южного моста материнской платы, а также сетевого адаптера. Невзирая на то, что данная микросхема является вспомогательной, она выполняет весьма важную функцию: осуществляет сбор локальных данных, от которых зависит работоспособность системы в целом. Кроме того, SM-шина используется для обеспечения связи с другими элементами на системной плате, например для управления вентиляторами. Несмотря на то что современные операционные системы могут дублировать работу такого контроллера, важно, чтобы он также корректно выполнял свою функцию. Поэтому лучше потратить немного времени и установить для него необходимое программное обеспечение, чем впоследствии выяснять причины сбоев в работе оборудования ПК.
Установка драйвера
Найти необходимое программное обеспечение можно на оптическом диске, который в обязательном порядке входит в комплект материнской платы, или на официальном сайте производителя данной системной платы. Для установки драйвера зайдите в «Диспетчер устройств», выберите «SM-контроллер шины» и далее по подсказкам операционной системы установите необходимое программное обеспечение. Для такой процедуры понадобится всего-навсего минут 10 вашего времени. После этого перезагрузите компьютер и проверьте, корректно ли установлены драйвера, для чего снова зайдите в «Диспетчер устройств» и убедитесь в этом.
Знать строение компьютера обычному пользователю совершенно не обязательно. Но если вы хотите считать себя продвинутым пользователем, который без труда справляется с любой поставленной компьютерной задачей, да к тому же собирается в ближайшем будущем самостоятельно собрать свой первый системный блок, то подобные знания просто необходимы.
Но даже все эти компоненты в совокупности не смогут функционировать. Для этого необходимо организовать между ними связь, посредством которой осуществлялись бы логические и вычислительные операции. Подобные системы связи организуют системные шины компьютера. Поэтому можно сказать, что это еще один незаменимый компонент системного блока.
Системная шина
Системная шина – это совокупность путей передачи данных, которые обеспечивают взаимосвязанную работу между остальными элементами компьютера: процессором, видеоадаптером, жесткими дисками и другими компонентами. Данное устройство состоит из нескольких уровней:
Первостепенное деление системных шин
В самом общем случае системной шиной можно назвать любое устройство, которое служит для объединения в одну систему нескольких устройств. Даже сетевые подключения, например, сеть Интернет, в некотором роде является системной шиной.
Самая важная система связи
Быстродействие компьютера
Для функционирования микропроцессора в состав системы каналов связи входит сразу несколько шин. Это шины:
Количество представленных типов системных каналов связи процессора может быть от одного и более. Причем считается, что чем больше шин установлено, тем больше общая производительность компьютера.
Важным показателем, который также затрагивает производительность ПК, является пропускная способность системной шины. Она определяет скорость передачи информации между локальными системами электронно-вычислительной машины. Рассчитать ее довольно просто. Необходимо лишь найти произведение между тактовой частотой и количеством информации, то есть байт, которая передается за один такт. Так, для давно устаревшей шины ISA пропускная способность составит 16 Мбайт/с, для современной шины PCI Express это значение будет находиться на отметке в 533 Мбайт/с.
Виды компьютерных шин
Несмотря на то что она была изобретена более полувека назад, данная системная шина активно применялась и в настоящее время, уверенно конкурируя с более современными представителями. Это смогло осуществиться благодаря выпуску большого количества расширений, которые увеличивали ее функционал. Лишь в последние годы процессоры стали выпускаться без использования ISA.
Современные системные шины
Шина VESA стала новым словом в области компьютерной техники. Разработанная специально для непосредственного подключения внешних устройств к самому процессору, она и по сей день обладает высокими показателями скорости передачи информации и обеспечивает высокую производительность процессора.
Вот и вся краткая справочная информация, которая должна пролить свет на один из важнейших компонентов современных компьютеров. Следует сказать, что здесь представлена лишь малейшая частичка информации о компьютерных шинах. Полным их изучением занимаются в специальных заведениях на протяжении нескольких лет. Подобная детальная информация необходима непосредственно для разработки новых моделей микропроцессоров или для модернизации уже существующих. Шина PCI является ближайшим конкурентом предыдущего представителя каналов передачи данных. Эта системная шина была разработана компанией Intel специально для производства процессоров собственной торговой марки. Данное устройство способно обеспечить еще большую скорость передачи данных и при этом не нуждается в дополнительных элементах, как в предыдущем примере.
SM контроллер шины: что это за устройство и где взять для него драйвер
Когда в сборе вся команда, дела идут как надо, но если отсутствует хотя бы одно важное звено, работа не клеится. Так и с компьютером: когда все драйвера на месте, он пашет на все сто, а если какой-то из них не установлен или слетел, жди неприятных сюрпризов.
С поиском и установкой драйверов для видео, звука, сети и другого известного оборудования любой мало-мальски опытный юзер справляется без труда, но такое объекты, как SM контроллер шины, многих ставят в тупик: что, мол, это за устройство, где находится и где взять для него драйвер. Что ж, давайте разберемся.
Шина SM: что это такое
Шина системного управления SM (System Management Bus), она же SMBus и SMB – это двухпроводная, двунаправленная линия данных, образующая связь интегральных схем внутри компьютера. Она используется для получения информации об устройствах, их настройки и управления режимами работы, по ней передаются данные от датчиков аппаратного мониторинга (напряжений, температур, скорости вращения вентиляторов, закрытия крышки и прочего), она служит средой передачи сигналов подсистемы питания ПК и т. д. Одним словом, шина SM – универсальный интерфейс, который взаимодействует с основной массой оборудования.
Например, посредством SMBus контроллер памяти получает данные о характеристиках каждого установленного модуля ОЗУ и задает параметры их совместной работы. Через нее пользователь и программы могут менять настройки часов реального времени, управлять яркостью монитора, увеличивать громкость динамиков и т. д.
Пример изображения интерфейса SMBus на схеме электронного устройства показан ниже. Линия SDA отвечает за передачу данных, а SCL – за синхронизацию.
Зачем нужен драйвер контроллера SMBus и где его взять
Работой шины SM управляет контроллер, который входит в состав чипсета (модуля PCH, FCH) материнских плат как для процессоров Intel, так и для AMD. Чтобы операционная система, пользователь и программы могли взаимодействовать с контроллером, в частности, получать информацию о железе и управлять его настройками, нужен драйвер.
Тот, кто имеет опыт установки драйверов, наверняка знает, что производители ПК, ноутбуков и отдельных компьютерных железяк выпускают драйвера для устройств целиком, например, для видеокарты, для Wi-Fi, для монитора и т. д. Драйвера для шины SMBus среди них, за редким исключением, нет. Почему? Да потому, что он входит в состав драйвера чипсета материнской платы.
В диспетчере задач ОС Windows он находится в разделе «Системные устройства»:
Согласитесь, мало кому бы понравилось ставить «дрова» для такого количества системных устройств вручную, поэтому производители материнок и ноутбуков собирают их в один пакет. Лишь в редких случаях драйвер SMBus предлагается установить отдельно.
Итак, для установки драйвера шины SM:
При наличии отдельного драйвера шины SMBus чаще всего достаточно скачать и установить только его. Если возникают проблемы, предварительно установите драйвер на чипсет.
Кстати, ошибки при установке драйверов различного оборудования зачастую возникают из-за нарушения порядка этой процедуры. Чтобы все встало как надо, в первую очередь следует устанавливать на ПК драйверы чипсета, затем системных интерфейсов – USB, SATA и т. д. (если они выложены отдельно), после них – остальных устройств: видео, аудио, Wi-Fi, Bluetooth и прочего.
Что делать, если я не могу найти или установить нужный драйвер?
Переустановка драйверов чипсета решает проблему с определением контроллера шины SM в 95-98% случаев. Оставшиеся проценты приходятся на редкие и устаревшие устройства, а также на спонтанные ошибки, когда из всего пакета не устанавливается или некорректно работает только драйвер SMBus. В диспетчере устройств такой девайс бывает отмечен восклицательным знаком:
В таких случаях помогает поиск драйвера на сторонних ресурсах по коду устройства и производителя.
Но будьте внимательны: под видом драйверов некоторые сайты распространяют вредоносное и рекламное ПО. Поэтому перед установкой обязательно просканируйте его антивирусом.
Современные внутренние шины – смена приоритетов!
Среди наиболее динамично развивающихся областей компьютерной техники стоит отметить сферу технологий передачи данных: в отличие от сферы вычислений, где наблюдается продолжительное и устойчивое развитие параллельных архитектур, в «шинной» 1 сфере, как среди внутренних, так и среди периферийных шин, наблюдается тенденция перехода от синхронных параллельных шин к высокочастотным последовательным. (Заметьте, «последовательные» – не обязательно значит «однобитные», здесь возможны и 2, и 8, и 32 бит ширины при сохранении присущей последовательным шинам пакетной передачи данных, то есть в пакете импульсов данные, адрес, CRC и другая служебная информация разделены на логическом уровне 2 ).
1 Компьютерная шина (магистраль передачи данных между отдельными функциональными блоками компьютера) – совокупность сигнальных линий, объединённых по их назначению (данные, адреса, управление), которые имеют определённые электрические характеристики и протоколы передачи информации. Шины отличаются разрядностью, способом передачи сигнала (последовательные или параллельные), пропускной способностью, количеством и типами поддерживаемых устройств, протоколом работы, назначением (внутренняя, интерфейсная).
Шины могут быть синхронными (осуществляющими передачу данных только по тактовым импульсам) и асинхронными (осуществляющими передачу данных в произвольные моменты времени), а также могут использовать мультиплексирование (передачу адреса и данных по одним и тем же линиям) и различные схемы арбитража (то есть способа совместного использования шины несколькими устройствами).
2 Основным отличием параллельных шин от последовательных является сам способ передачи данных. В параллельных шинах понятие «ширина шины» соответствует её разрядности – количеству сигнальных линий, или, другими словами, количеству одновременно передаваемых («выставляемых на шину») битов информации. Сигналом для старта и завершения цикла приёма/передачи данных служит внешний синхросигнал. В последовательных же каналах передачи используется одна сигнальная линия (возможно использование двух отдельных каналов для разделения потоков приёма-передачи). Соответственно, информационные биты здесь передаются последовательно. Данные для передачи через последовательную шину облекаются в пакеты (пакет – единица информации, передаваемая как целое между двумя устройствами), в которые, помимо собственно полезных данных, включается некоторое количество служебной информации: старт-биты, заголовки пакетов, синхросигналы, биты чётности или контрольные суммы, стоп-биты и т. п. Но в свете последних достижений в «железной» сфере компьютерной индустрии малое количество сигнальных линий и логически более сложный механизм передачи данных последовательных шин оборачиваются для них существенным преимуществом – возможностью практически безболезненного наращивания рабочих частот в таких пределах, каких никогда не достичь громоздким параллельным шинам с их высокочастотными проблемами ожидания доставки каждого бита к месту назначения. Проблема в том, что каждая линия такой шины имеет свою длину, свою паразитную ёмкость и индуктивность и, соответственно, своё время прохождения сигнала от источника к приёмнику, который вынужден выжидать дополнительное время для гарантии получения данных по всем линиям. Так, к примеру, каждый байт, передаваемый через линк шины PCIExpress, для увеличения помехозащищённости «раздувается» до 10 бит, что, однако, не мешает шине передавать до 0,25 ГБ за секунду по одной паре проводов. Да, ширина последовательной шины на самом деле является количеством одновременно задействованных отдельных последовательных каналов передачи.
Все эти нововведения и смена приоритетов преследуют в конечном итоге одну цель – повышение суммарного быстродействия системы, ибо не все существующие архитектурные решения способны эффективно масштабироваться. Несоответствие пропускной способности шин потребностям обслуживаемых ими устройств приводит к эффекту «бутылочного горлышка» и препятствует росту быстродействия даже при дальнейшем увеличении производительности вычислительных компонентов – процессора, оперативной памяти, видеосистемы и так далее.
Процессорная шина
3 Кстати, именно результирующей «учетверённой» частотой передачи данных (как и в случае с «удвоенной» передачей DDR-шины, где данные передаются дважды за такт) хвастаются производители и продавцы, умалчивая тот факт, что для многочисленных мелких запросов, где данные в большинстве своём умещаются в одну 64-байтную порцию (и, соответственно, не используются возможности DDR или QDR/QPB), на чтение/запись важнее именно частота тактирования.
В архитектуре же AMD64 (и её микроархитектуре K8), используемой компанией AMD в своих процессорах линеек Athlon 64/Sempron/Opteron, применён революционно новый подход к организации интерфейса центрального процессора – здесь имеет место наличие в самом процессоре нескольких отдельных шин. Одна (или две – в случае двухканального контроллера памяти) шина служит для непосредственной связи процессора с памятью, а вместо процессорной шины FSB и для сообщения с другими процессорами используются высокоскоростные шины HyperTransport. Преимуществом данной схемы является уменьшение задержек (латентности) при обращении процессора к оперативной памяти, ведь из пути следования данных по маршруту «процессор – ОЗУ» (и обратно) исключаются такие весьма загруженные элементы, как интерфейсная шина и контроллер северного моста.
Различия реализации классической архитектуры и АМD-K8
Различия реализации классической архитектуры и АМD-K8
Ещё одним довольно заметным отличием архитектуры К8 является отказ от асинхронности, то есть обеспечение синхронной работы процессорного ядра, ОЗУ и шины HyperTransport, частоты которых привязаны к «шине» тактового генератора (НТТ), которая в этом случае является опорной. Таким образом, для процессора архитектуры К8 частоты ядра и шины HyperTransport задаются множителями по отношению к НТТ, а частота шины памяти выставляется делителем от частоты ядра процессора 4
4 Пример: для системы на базе процессора Athlon 64-3000+ (1,8 ГГц) с установленной памятью DDR-333 стандартная частота ядра (1,8 ГГц) достигается умножением на 9 частоты НТТ, равной 200 МГц, стандартная частота шины HyperTransport (1 ГГц) – умножением НТТ на 5, а частота шины памяти (166 МГц) – делением частоты ядра на 11.
В классической же схеме с шиной FSB и контроллером памяти, вынесенным в северный мост, возможна (и используется) асинхронность шин FSB и ОЗУ, а опорной частотой для процессора выступает частота тактирования 5 (а не передачи данных) шины FSB, частота же тактирования шины памяти может задаваться отдельно. Из наиболее свежих чипсетов возможностью раздельного задания частот FSB и памяти обладает NVIDIA nForce 680i SLI, что делает его отличным выбором для тонкой настройки системы (разгона).
5 Пример: процессор Intel Celeron 1,7GHz Willamette с заявленной на коробке частотой шины FSB-QPB 400 МГц, тем не менее, имеет коэффициент умножения 17 (1700=100 * 17), а не 4,5.
HyperTransport
Эмблема HyperTransport Technology Consortium
Эмблема HyperTransport Technology Consortium
HyperTransport – это прежде всего технология, управлением спецификациями и продвижением которой занимается HyperTransport Technology Consortium, куда входят такие компании, как Advanced Micro Devices (AMD), Alliance Semiconductor, Apple Computer, Broadcom Corporation, Cisco Systems, NVIDIA, PMC-Sierra, Sun Microsystems, Transmeta и ещё более 140 малых и больших компаний.
Основные особенности и возможности, предоставляемые технологией HyperTransport
Топология шины HyperTransport
Топология шины HyperTransport
На данный момент консорциумом HyperTransport разработана уже третья версия спецификации, согласно которой шина HyperTransport может работать на частотах до 2,6 ГГц (сравните с шиной PCI и её 33 или 66 МГц). Это позволяет передавать до 5200 миллионов пакетов в секунду при частоте сигнала синхронизации 2,6 ГГц; частота сигнала синхронизации настраивается автоматически.
Полноразмерная (32-битная) полноскоростная (2,6 ГГц) шина способна обеспечить пропускную способность до 20800 МБ/с (2 * (32/8) * 2600) в каждую сторону, являясь на сегодняшний день самой быстрой шиной среди себе подобных.
Самые известные решения c использованием HyperTransport:
7 Напомним, что к процессору х86-архитектуры нельзя напрямую подключать устройства с шинами PCI, так как этот процессор использует свою специализированную процессорную шину, которая, однако, может быть различной у разных процессоров.
Контроллер шины
Рис. 5.
Рис. 4.
Рис. 3.
Рис. 2.
Рис. 1.
Здесь представлены два микропроцессора, которые могут через магистраль обращаться к общими ЗУ и УВВ. Очевидно, для ЗУ и УВВ, представленных на рисунке, существует два ведущих устройства — микропроцессор 1 и микропроцессор 2. Естественно, микропроцессоры используют общие ресурсы не одновременно, а по очереди, поэтому в конкретном цикле обмена ведущим устройством является один из них. В общем случае количество микропроцессоров может быть больше двух.
Такая схема может применяться в разных случаях, например, если нужно осуществить обмен данными между двумя микропроцессорами через общее ЗУ, или иметь доступ из нескольких МПС к одному УВВ, через которое подключен какой-либо датчик.
На рис. 1 представляет упрощенное представление системы с несколькими микропроцессорами. В реальности, системы будет выглядеть следующим образом (рис. 2):
|
У каждого микропроцессора имеются свои персональные ЗУ и УВВ, находящиеся целиком и полностью в его распоряжении. Вместе с микропроцессором они образуют микропроцессорную систему. В то же время, каждый микропроцессор имеет доступ к общим ресурсам — ЗУ и УВВ.
Магистрали (шины), соединяющие все эти устройства, имеют свою классификацию (рис. 3):
|
Магистраль, выходящая из микропроцессора называется локальной шиной микропроцессора. Она является мультиплексированной (в большинстве случаев). Магистраль, соединяющая микропроцессор с УВВ и ЗУ, находящимися в его персональном распоряжении, называется резидентной шиной. Магистраль, соединяющая микропроцессор с общими ЗУ и УВВ носит название системной шины. Резидентная и системная шины не мультиплексированы.
Очевидно, для подключения УСО к микропроцессору в данном случае мы должны использовать специальную схему — схему шинного интерфейса (СШИ). Она должна располагаться в месте соединения всех трех шин (см. рис. 3). СШИ должна решать следующие задачи:
1. Демультиплексирование локальной ШАД;
2. Хранение адреса в течение всего цикла обмена;
3. Подключение микропроцессора (локальной шины) к системной или резидентной шине, в зависимости от того, по какой шине будет происходить обмен.
Отдельно должен решаться вопрос о порядке подключении к системной шине (СШ). Очевидно, что к общим ресурсам (ЗУ, УВВ) в некий момент времени может иметь доступ только один микропроцессор. Следовательно, должна существовать возможность проверки занятости СШ. Также необходимо предусмотреть механизм для разрешения конфликтных ситуаций, например, когда два или более микропроцессора одновременно попытаются получить доступ к общим ресурсам. Все эти вопросы будут рассмотрены нами позже, пока же сосредоточимся на создании СШИ, решающей сформулированные выше три задачи.
Очевидно, что СШИ должно быть две — одна будет обеспечивать подключение к СШ, другая — к РШ. Естественно, в каждом цикле обмена работать будет либо одна, либо другая СШИ (рис. 4):
|
Рассмотрим более детально саму схему шинного интерфейса (рис. 5):
|
Если посмотреть на сформулированные ранее три задачи, которые должна решать СШИ, мы можем увидеть, что две первые из них совпадают с задачами, которые решала рассмотренная в предыдущем разделе схема демультиплексирования. Следовательно, она может быть положена в основу СШИ.
Остается третья задача: обеспечение подключения/отключения от локальной шины (в соответствии с сигналом, передаваемым по специальной линии «Разрешение подключения к шине»). На выходе СШИ мы имеем три шины: адреса, данных и управления. Задача отключения шины данных фактически уже решена в схеме демультиплексирования: при неактивном сигнале DEN шина данных отключена от локальной шины. Отключение шины адреса также может быть выполнено в рамках известной нам схемы демультиплексирования путем подачи сигнала «Разрешение подключения к шине» на вход OE буферного регистра.
Для отключения шины управления используется специальное устройство, называемое контроллером шины (рис. 6).
Контроллер шины предназначен для решения задач управления шинным интерфейсом.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет