Виды гибких токопроводящих шин
Что такое шинопровод, виды шинопроводов, применение
В ГОСТ 28668.1-91 (МЭК 439-2-87) написано, что шинопровод — это комплектное устройство, прошедшее типовые испытания, в виде системы проводников, размещенных внутри лотка, трубы или иной подобной оболочки, которое состоит из разделенных промежутками шин, которые в свою очередь опираются на изоляционный материал. Шинопроводы производят из алюминиевых или медных шин, размещенных в защитной оболочке.
Очевидно, сам термин «шинопровод» не дает нам представления о сечении, геометрической форме или размерах самого проводника. Другими словами, шинопровод представляет собой систему жестких медных или алюминиевых шин, помещенных в защитную металлическую оболочку; изолированную систему шин, предназначенную для передачи и распределения электрической энергии. Типичный шинопровод рассчитан на напряжение до 1000 В, и поставляется в виде комплектных секций.
Шинопровод, как конструкция, легко поддается модификации для оптимальной подачи электроэнергии к потребителям. Если требуется изменить конфигурацию, то всегда допустим демонтаж.
Шинопровод может быть, например, направлен из одного помещения к другому. К примеру в больших торговых залах, с целью освещения или зонирования помещений, применяют шинопроводы модульного исполнения, на которых и размещаются прожекторы.
Всегда можно встретить шинопроводы, в виде одиночной или несколько линий, в торговых центрах, где их монтируют обычно в различные формы. Процесс монтажа шинопровода достаточно прост, он не требует продолжительных работ и больших физических затрат. Таким образом, шинопровод выступает замечательной альтернативой кабелю.
Шинопроводы по типу изоляции делятся на:
Шинопроводы по назначению делятся на:
Магистральные шинопроводы — предназначенные для монтажа в производственных помещениях. Шинопровод магистрали прокладывается прямо от подстанции. В производственных цехах предприятий, где станки и другие электрические механизмы располагаются по всей площади в виде рядов, или регулярно перемещаются в связи с изменениями в технологиях производственного процесса, в качестве распределительной сети и питающих магистральных линий применяют непосредственно распределительные и магистральные закрытые шинопроводы. Из отдельных секций и элементов собирается трасса шинопровода. Пример трассы магистрального шинопровода приведен ниже.
Распределительные шинопроводы – предназначены для распределения электроэнергии от главной магистрали к нескольким потребителям. Распределительные шинопроводы рассчитаны на токи до 7500 А и на большее количество мест подключения потребителей (от 3 до 6) на 3 метровой секции. В цехах различных предприятий закрытые распределительные шинопроводы используют довольно широко. Их поставляют в виде комплекта секций, длина каждой из которых 3 м, снабженных соединительными элементами для соединения секций в последовательные ряды, ответвительных коробок, и вводных коробок, для подключения шинопроводов к питающей сети.
Троллейные шинопроводы – применяются для питания монорельсов, подъемных кранов, подвесных дорог и прочих передвижных электрических систем. Троллейные шинопроводы допускается применять на напряжение до 660 В в электрических сетях, имеющих глухозаземленную нейтраль.
1 — Концевой подвод питания.
2 — Скользящий подвес.
3 — Жесткий подвес.
4 — Концевая заглушка.
5 — Токосъемник.
6 — Стыковая крышка.
7 — Альтернативное питание.
Этот вид шинопровода укомплектован прямолинейными секциями до 3 м, и угловыми секциями на 45 градусов и прямой угол. Это дает возможность выполнить сборку линии любой сложности. Секции шин соединяют специально предназначенными муфтами.
Виды гибких токопроводящих шин
В данной статье будут рассмотрены основные виды и типы электротехнических шин и регламентирующих их производство документов.
Электротехническая шина – это проводник с низким сопротивлением (активным и реактивным), к которому могут подсоединяться отдельные электрические цепи (в низковольтных установках и сетях) или высоковольтные устройства (электрические подстанции, высоковольтные РУ и т.д.). Использование шин обеспечивает экономию площади установки, материало- и трудозатрат.
В качестве основного материала для изготовления электротехнических шин как правило используют алюминий и медь.
Производство шин регламентируется рядом ГОСТов и технических условий:
ГОСТ 15176-89 Шины прессованные электротехнического назначения из алюминия и алюминиевых сплавов. Технические условия. В ГОСТе регламентируются параметры, в соответствии с которыми должны изготовляться алюминиевые шины – толщина, ширина, длина, площадь поперечного сечения, диаметр окружности и соответствующая им масса на 1 метр для готовых шин. Указываются допустимые предельные отклонения от указанных величин, марки алюминия, требования к качеству, внешнему виду, механическим и электрическим параметрам. Приводятся правила маркировки, упаковки и приема шин данного типа.
ГОСТ 434-78 Проволока прямоугольного сечения и шины медные для электрических целей. Технические условия. В стандарте указаны номинальные размеры и расчетные сечения медных шин, марки меди, удельное электрическое сопротивление и предельные отклонения размеров. Приводятся допустимые длины шин и массы бухт, а также возможные отклонения от данных величин. Предъявляются требования к материалу изготовления шин, внешнему виду готовых изделий (допустимые дефекты, цвета). Изложены правила упаковки, транспортировки и хранения, приемки и испытаний.
ГОСТ 10434-82 Соединения контактные электрические. Классификация. Общие технические требования. Приведена классификация контактных соединений по таким параметрам как: область применения, климатическое исполнение и категории размещения электротехнических устройств, конструктивное исполнение. Указаны требования к конструкции, электрическим и механическим параметрам, надежности и безопасности в зависимости от классификации. Даны ссылки на ряд сопутствующих ГОСТов.
ГОСТ 8617-81 Профили прессованные из алюминия и алюминиевых сплавов. Технические условия. Приведена классификация профилей данного типа (по типу, по состоянию материала и типу прочности). Даны ссылки на ГОСТы с номинальными размерами, указаны величины предельных отклонений. Описаны технические требования к маркам алюминиевых сплавов для изготовления профилей, к механическим свойствам, допустимым дефектам, качеству поверхности и внешнему виду готовых изделий. Описаны условия транспортировки и хранения, правила приемки, методы испытаний.
ТУ 1-5-009-80 Шины электротехнические из алюминиевых сплавов.
ТУ 16.705.002-77. Шины алюминиевые прямоугольные. Описаны технические условия для изготовления алюминиевых шин прямоугольным сечением. Указаны номинальные и допустимые размеры, марки сплавов, электрические характеристики.
Согласно классификации, существует несколько типов шин.
Сборная шина – это шина, к которой могут подключаться распределительные шины и блоки ввода/вывода.
Силовая шина (шина электропитания) – шина, которая служит для передачи энергии внутри силовых блоков и между элементами мощных преобразовательных устройств и характеризуется высокими значениями токов и напряжений. Силовая шина может являть собой твердую неизолированную шину, твердую шину в изоляции или конструкцию из набора чередующихся проводящих и изолирующих слоёв. Твердая неизолированная медная шина поставляется производителями с изолирующими шинодержателями различных типов и изолирующими экранами, исключающими непосредственный доступ к клеммам силовых шин. Данные шины характеризуют большая допустимая плотность тока и высокое напряжение изоляции. В качестве материала шин зачастую используется медь и медные сплавы, а также алюминий. По способу крепления силовые шины могут быть вертикальные, горизонтальные, изолированные, задние/ступенчатые и универсальные (мультистандартные).
Шина заземления – главная деталь заземляющей системы электроустановок и электросетей. Её также называют главная заземляющая шина ГЗШ. С шиной заземления соединяется рабочий ноль, защитные нулевые проводники и провода внешних заземлений. Обычно ГЗШ являет собой медную пластину с перфорированными отверстиями. Хотя иногда встречаются и стальные ГЗШ.
Перфорированная медная шина заземления
Перед подключением к ГЗШ, провода заземления должны быть опрессованы наконечником для кабелей или соединительной гильзой, а затем уже подключены на болт с гайкой (например М5). Шина также комплектуется опорными изоляторами с крепежом.
Шина заземления на опорных изоляторах с проводами заземления
Шины для крепления на DIN-рейке – шины, применяемые для крепления на монтажных рейках в электрических щитах или шкафах управления. Данный тип шин зачастую производят из латуни или луженой меди, а диэлектрическое основание, которым осуществляется крепление к монтажным рейкам, из полиамида. Шинами на din-рейку являются нулевые шины, коммутирующие в щитах нулевые провода и провода заземления, или же распределительные шины. Встречаются также шины на din-рейку в корпусе. Такие шины называются распределительными шинами в блоке или распределительными блоками.
Шина нулевая в изоляторе на DIN-рейку
Распределительная шина в блоке
Распределительная шина – это шина, подключенная к сборной шине и питающая устройство вывода. Данная шина входит в состав одной секции НКУ (низковольтного устройства распределения и управления). Одним из видов распределительных шин являются соединительные или гребенчатые шины. Они предназначены для параллельного включения модульных автоматов, УЗО, дифференциальных автоматов, контакторов и т.д. Гребенчатые шины исполняются из медной пластины прямоугольного сечения и помещаются в пластиковый корпус.
Гребенчатая шина
Частным случаем распределительных шин являются ступенчатые распределительные блоки. Блоки состоят из ступенчатых изоляционных опор, с помощью которых осуществляется крепление, и как правило 4-х медных шин. На шинках находятся отверстия: резьбовые (М6) для отходящих цепей и без резьбы для питания распределительного блока. Блок может устанавливаться как горизонтально (в зоне коммутационного оборудования), так и вертикально (в кабельном канале шкафа). К лицевой части блока крепится изолирующий экран.
Ступенчатый распределительный блок
Схема горизонтальной и вертикальной установки распределительного блока
Номинальные значения параметров шин указаны в приведенных в начале статьи ГОСТах. Поэтому далее в статье будут приведены лишь ключевые характеристики различных типов шин.
Шины являют собой токоведущие части электрических установок, соединяя между собой оборудование различного типа: генераторы, трансформаторы, синхронные компенсаторы, выключатели, разъединители, контакторы и т.д. Током нагрузки определяется сечение шин, также учитывается устойчивость к току к.з.
Шинный мост из жестких неизолированных шин применяется: на выводах генераторов, на входах главных распределительных устройств, в соединениях трансформатора с РУ и КРУ на 6 – 10 кВ, ГРУ и трансформатора связи.
Шинный мост от силового трансформатора
Соединения из жестких неизолированных шин прямоугольным или коробчатым сечением выполняются в закрытых РУ 6 – 10 кВ (в том числе сборные шины), в качестве соединений между ГРУ и трансформатором собственных нужд, между шкафами распределительных щитов. Шины коробчатого сечения рекомендуют использовать при больших токах, они обеспечивают меньшие потери и лучшее охлаждение. Крепление жестких шин осуществляется с помощью опорных изоляторов. Гибкие шины применяются в РУ на 35 кВ и выше, в соединениях блочных трансформаторов с ОРУ.
ГРЩ с медной ошиновкой
Во всех типах соединений в низковольтных установках и сетях промышленного назначения для передачи, распределения электроэнергии и подключения управляющих устройств используются медные изолированные шины (как жесткие, так и гибкие). Конструктивно данные шины являют собой одну или несколько медных тонких пластин иногда луженых с концов, покрытых изолирующей оболочкой как правило из ПВХ или другого диэлектрика с высоким сопротивлением. Данные шины являются альтернативой как кабелям, так и жесткой ошиновке и могут служить соединением между: главной силовой машиной и распределительным оборудованием (контакторами, прерывателями цепи, переключателями и т.д.), выводом трансформатора и шинопроводом, шинопроводом и электрическим шкафом.
Коммутация гибкой изолированной шиной отходящих автоматов
Применение изолированных шин позволяет экономить место, так как шины можно располагать гораздо ближе друг к другу, чем в случае неизолированной ошиновки. Преимущества изолированных шин – устойчивость к коррозии и простота монтажа. Крепежные отверстия контактных площадок делаются пробивкой непосредственно в материале контакта, что лишает потребности в кабельных наконечниках и устраняет проблемы плохого присоединения контактов. Большим спросом пользуются именно гибкие изолированные медные шины. Их главное преимущество в сравнении с жесткими – более легкий монтаж, так как нет необходимости в специнструментах и резке шины, если нужен поворот в плоскости. Гибкая шина легко меняет форму в зависимости от потребностей монтажа. Однако ряд производителей выпускают твердые изолированные шины, в том числе и по запросу. Крепление изолированных шин осуществляется с использованием болта и контактных шайб. Затягивать необходимо ключом, имеющим ограничения по моменту затяжки. Крепеж не должен быть в смазке.
Крепление медной изолированной шины
Еще одной разновидностью гибких шин являются медные плетённые шины. Такая шина сплетена из медных полос и является очень гибкой. Она используется в местах, подверженных сверхсильной вибрации, таких например, как трансформаторные шинные мосты. Данные шины также применяются для подключения различного оборудования к шинопроводам и линиям шин. Контактные площадки плетённых шин бывают как со сверлением, так и без. Выпускаются также плетённые шины, изготовленные особым методом – диффузионной сварки под давлением. Тонкослойные материалы свариваются путем пропускания через них постоянного тока под давлением. Такие шины также называют пластинчатые шинные компенсаторы или гибкие пластинчатые шины. Они имеют большую токопроводимость и меньшее тепловыделение.
Шинные компенсаторы
Их применяют там, где необходимы компенсация теплового расширения, вибро- или сейсмоустойчивость, а также где происходит регулярный изгиб в одной оси. Например это могут быть: гибкие токопроводы для сварочных аппаратов, автоматических выключателей, шины питания для индукционных печей и печей сопротивления и т.д.
Жесткая медная шина более всего подходит для замены кабеля, используется в распределительных устройствах, а также для изготовления шинных сборок и шинопроводов. Производителями выпускаются как перфорированные так и гладкие шины различных размеров, в соответствии с ГОСТ. Производителями шин в настоящее время выпускается множество зажимов, соединителей и шинодержателей, облегчающих монтаж и обеспечивающих надёжный контакт. Зажимы предназначены для соединения жестких и гибких шин различного типа, биметаллические пластины – для алюминиевых и медных шин.
Шинодержатели выпускаются плоские, регулируемые плоские, компактные и усиленные, ступенчатые, а также универсальные.
Универсальный шинодержатель
Производителями предлагается широкий выбор изоляторов: опорные, проходные, изоляторы типа «лесенка». Все они используются для фиксации шин внутри шкафов и корпусов. Изоляторы одной стороной крепятся с помощью болтов к монтажному корпусу, с другой к ним крепится шина.
Шинный изолятор типа «лесенка»
Производителей меди и алюминия на рынке РФ можно пересчитать «по пальцам», точнее объединяющих их холдинги. Брендов электротехнических шин огромное количество, одних только марок мы насчитали более сотни (по всем типам шин) в виду этого нами принято решение развить эту тему и создать отдельный сайт полностью посвященный электротехническим шинам.
В этой связи приглашаем всех участников рынка электротехнических шин разместить информацию о своих продуктах на новом сайте.
Гибкие шины, конструкции и выбор
В электросетях нашли применение медные, алюминиевые, сталеалюминевые и стальные провода.
Медь обладает наименьшим электрическим сопротивлением (при 20 °С r =18 Ом∙мм /км) по сравнению с остальными применяемыми материалами. Временное сопротивление на разрыв медной проволоки составляет 38–40 кг/мм
. Медные провода покрываются слоем окиси, хорошо защищающей их от воздействия различных химических реагентов, находящихся в воздухе.
Сталь обладает значительно более высоким электрическим сопротивлением по сравнению с медью и алюминием, которое зависит от сорта стали, способа изготовления провода и от величины тока, протекающего по проводу. Временное сопротивление на разрыв стальных проводов достигает 70—120 кг/мм 2 и более.
Стальные провода подвержены значительному окислению. Для предотвращения разрушения их необходимо оцинковывать.
По конструктивному выполнению различают однопроволочные и многопроволочные провода, рис. 3.1.
Рис. 3.1. Провода воздушных линий:
а – однопроволочный; б – многопроволочный из одного металла; в – многопроволочный из двух металлов – сталеалюминевый
Однопроволочный провод состоит из одной круглой проволоки, рис. 3.1а. Многопроволочный провод свивается из отдельных круглых проволок диаметром 2—3 мм, рис.3.16. При увеличении сечения провода число проволок возрастает. Например, алюминиевый провод сечением 35 мм 2 состоит из 7 проволок, а алюминиевый провод сечением 185 мм 2 из 19 проволок.
Однопроволочные провода дешевле многопроволочных. Вместе с тем однопроволочные провода обладают следующими недостатками по сравнению с многопроволочными:
1. Механическая прочность однопроволочного провода резко снижается при наличии каких-либо дефектов в материале провода, возникших при его изготовлении, транспорте и монтаже. В многопроволочном проводе наличие дефекта в одной из проволок незначительно ухудшает механическую прочность всего провода. Кроме того, при изготовлении однопроволочного провода значительного диаметра не может быть обеспечено высокое временное сопротивление.
2. Многопроволочный провод является более гибким, что особенно существенно для проводов больших диаметров.
В связи с указанным однопроволочные стальные провода изготовляют диаметром не более 3 мм. Алюминиевые однопроволочные провода вообще не изготовляют из-за их низкой прочности.
Многопроволочные провода могут быть выполнены из одного металла (меди, алюминия, стали) или из двух металлов, например из алюминия и стали – так называемые сталеалюминевые провода.
В сталеалюминиевых проводах (рис. 3.1в) внутренние проволочки (сердечник провода) выполняют из стали с высоким временным сопротивлением на разрыв (110—120 кг/мм 2 ). Верхние ряды проволок изготовляют из алюминия. Стальной сердечник предназначен для увеличения механической прочности провода; алюминий является токопроводящей частью. Хотя сечение стальной части в среднем в 5 раз меньше сечения алюминиевой части, стальная часть воспринимает около 40 % всей механической нагрузки. Сталеалюминевые провода широко применяют в сетях напряжением 35—110 кв и выше.
Для удобства записи провода из разных материалов имеют различные марки: медные М, алюминиевые А, сталеалюминевые АС, стальные однопроволочные ПСО, стальные многопроволочные провода ПС и ПМС (провод меднистый стальной).
Сталеалюминевые провода с усиленным стальным сердечником имеют марку АСУ, с облегченным стальным сердечником АСО. Рядом с маркой провода записывают его номинальное сечение. Например, А-50 означает алюминиевый провод сечением 50 мм. Для стальных однопроволочных проводов рядом с маркой указывают диаметр провода, например ПСО-5 означает однопроволочный стальной провод диаметром 5 мм.
На территории городов и промышленных предприятий часто возникает необходимость прокладки в одном направлении большого числа электрических линий. В этих условиях сооружение воздушных линий обычно бывает невозможно вследствие загромождения опорами проездов и затруднения движения транспорта, увеличения числа аварий, усложнения исправления повреждений, ухудшения внешнего вида местности. При обрыве проводов воздушных линий, особенно линий высоких напряжений, возникает большая опасность для людей.
Наиболее целесообразно в рассматриваемых условиях сооружение подземных кабельных линий.
Токоведущие жилы изготовляют из медных или алюминиевых проволок и для уменьшения габаритов выполняют секторной формы и уплотненными. Для придания кабелю круглой формы между отдельными жилами вставляют специальные жгутики – заполнители из джута. Поверх изоляции кабель опрессовывают бесшовной оболочкой из алюминия или свинца для того, чтобы в изоляцию не попадала влага из воздуха. Для кабелей напряжением до 1 кВ применяют также оболочки из пластических масс.
Для зашиты от механических повреждений кабель покрывают броней из стальной ленты. Между металлической оболочкой кабеля и броней и поверх брони накладывают покровы из джута, пропитанные антикоррозийными составами. В воздухе прокладывают кабели без наружного джутового покрова. Для прокладки в туннелях и других местах, опасных в пожарном отношении, применяют специальные кабели с негорючими защитными покровами.
Силовые кабели напряжением до 35 кВ включительно изготовляют главным образом с изоляцией из плотной бумаги, пропитанной специальной вязкой кабельной массой (компаундом), рис. 3.2.
Рис. 3.2. Трехжильный кабель:
1 – токоведущая жила; 2 – обедненно-пропитанная бумажная изоляция; 3 – экран из металлизированной бумаги; 4 – стальной гибкий газопроницаемый шланг; 5 – свинцовая оболочка; 6 – антикоррозийный защитный слой; 7 – броня.
Кабели на напряжения 20 и 35 кВ выполняют с отдельно освинцованными круглыми жилами. Наличие отдельных свинцовых оболочек для каждой фазы обеспечивает равномерное распределение электрического поля и, следовательно, лучшее использование изоляции кабеля.
При напряжении 35 кВ находят применение газонаполненные кабели. Это освинцованные кабели с обедненной изоляцией. Кабель находится под небольшим избыточным давлением инертного газа (обычно азота), что значительно повышает изолирующие свойства бумаги.
Газонаполненные кабели применяют и на напряжение 10 кВ при крутонаклонных и вертикальных трассах. Применение обычных кабелей с вязкой пропиткой привело бы к стеканию пропиточной массы и ослаблению изоляции в верхних участках трассы кабеля. Кроме газонаполненных кабелей в этих случаях применяют и кабели со специальной нестекающей пропиточной массой. При напряжении 70 кВ и выше кабели с вязкой пропиткой практически неприменимы, так как при этом потребовалось бы значительное увеличение диаметра кабеля, что весьма затруднило бы его транспорт.
Кабели 110 кВ и выше обычно выполняют одножильными. Кабели 110— 500 кВ как правило с изоляцией из сшитого полиэтилена.
Для удобства записи кабели маркируют. Кроме марки указывают число и сечение жил кабеля.
Например, СБ-3Х95 означает освинцованный и бронированный двумя стальными лентами трехжильный кабель с медными жилами сечением 95 мм с наружным джутовым покровом; СБГ-3х95 означает такой же кабель, но без наружного джутового покрова; АСБГ – освинцованный бронированный кабель с алюминиевыми жилами без наружного джутового покрова; ААБГ — кабель с алюминиевыми жилами в алюминиевой оболочке.
Отдельные куски кабелей соединяют при помощи соединительных муфт. При этом концы жил кабелей освобождают от изоляции, свинцовой оболочки и защитных покровов и заделывают в соединительные зажимы. Жилы изолируют лентами кабельной бумаги. Поверх соединения надевают свинцовую муфту, концы которой припаивают к свинцовой оболочке кабелей. Через специальные отверстия муфту заполняют кабельной массой, после чего отверстия запаивают.
Применяют и другие конструкции соединительных муфт. Заслуживают внимания соединительные муфты из эпоксидного компаунда, основной частью которого являются эпоксидные смолы (один из типов полимеров). Эпоксидный компаунд заливают во временную форму, после его отвердения форму убирают. Эпоксидные муфты герметичны, просты в изготовлении, имеют малые размеры и высокую электрическую прочность.
На электрических станциях питание к двигателям собственных нужд (СН) и другим установкам подается по кабельным линиям, проложенным в каналах, туннелях и т. п.
Достоинства кабельных линий по сравнению с воздушными: обеспечение безопасности для людей в населенных пунктах и возможности широкого развития электроснабжения потребителей рассматриваемого района; меньшая повреждаемость кабельных линий. К числу недостатков кабельных линий по сравнению с воздушными относятся их значительно большая стоимость (в 2—3 раза для линий 6—35 кВ и в 5—8 раз для линий 110 кВ) и большая сложность и длительность ремонта.
Запрещается применять кабели с бумажно-масляной изоляцией;
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет