Язык программирования для плк st

Подробности об языке программирования на ST в CoDeSyS

Язык программирования для плк st. Смотреть фото Язык программирования для плк st. Смотреть картинку Язык программирования для плк st. Картинка про Язык программирования для плк st. Фото Язык программирования для плк st

Прежде чем мы с вами будем рассматривать упрощённую графическую систему программирования для технологов, хотелось бы в двух словах рассказать о базисном языке программирования СИ. Язык ST CoDeSyS отличается от других своей гибкостью и адаптивностью под любые задачи. Он позволяет обрабатывать сложные решения и видеть всю картину в целом. Чаще всего применяется в функциональных блоках для обработки алгоритма той или иной части рабочего органа станка или линии.

Из этой статьи вы узнаете:

Здравствуйте уважаемые Дамы и Господа! Меня зовут Гридин Семён, и я являюсь автором этого блога. В данном посте я хочу обсудить с вами базовые понятия языка программирования CoDeSyS. Называется он ST CoDeSyS, очень сильно напоминает СИ.

Язык программирования ST и типы переменных

ST (Structured text) — это одна из составных частей комплекса CoDeSyS и представляет собой текстовый редактор высокого уровня. Он очень похож на Basic или Pascal. Такой способ программирования является идеальным инструментом для людей-программистов. Преимуществом языка является создание сложных математических и разветвленных алгоритмов.

ST позволяет без труда описывать сложные операции компактным и лёгким для восприятия текстом. Structured Text содержит в себе много конструкций, позволяющие присваивать переменные, использовать готовые библиотеки, функции и функциональные блоки.

Язык программирования для плк st. Смотреть фото Язык программирования для плк st. Смотреть картинку Язык программирования для плк st. Картинка про Язык программирования для плк st. Фото Язык программирования для плк st

В чём преимущество данного способа программирования? давайте с вами перечислим:

С этим мы разобрались, но, прежде чем переходить к непосредственному изучению азов программирования, необходимо ознакомиться с элементом языка — тип данных. Хочу обратить внимание, этот элемент практически схож во многих си-подобных языках (Питон, Ардуино IDE, СИ# т.д.)

Язык программирования для плк st. Смотреть фото Язык программирования для плк st. Смотреть картинку Язык программирования для плк st. Картинка про Язык программирования для плк st. Фото Язык программирования для плк st

Тип данных переменной определяет род информации, диапазон представлений и множество допустимых операций. Языки МЭК используют строгую идеологию в этом отношений. Любую переменную можно использовать только после её объявления. Присваивать значения одной переменной другой можно, только если они одного типа. В другом случае используются преобразователи типов.

В таблице ниже я представлю типы данных, которые используются чаще всех:

ТипНазваниеПределРазмер в байтах
BOOLЛогическое1 бит1 бит
BYTEЦелочисленое8 бит1 байт
WORDЦелочисленое16 бит2 байта
INTЦелочисленое-32768-327672 байта
UINTЦелочисленое0-655352 байта
FLOATВещественное±10³³4 байта
DATE_AND_TIMEДата и время
STRINGСтроковое

Перечень основных операторов

Операторы — это символы определённых операций. Но их можно определить и как функции, наделёнными определёнными привилегиями. Они имеют определённые ключевые слова и формы для представления на ST.

Оператор выбора IF позволяет выполнить различные группы выражений в зависимости от условий, выраженных логическими выражениями.

Источник

Языки программирования PLC: LD, FBD, SFC, ST, IL, CFC

Язык программирования для плк st. Смотреть фото Язык программирования для плк st. Смотреть картинку Язык программирования для плк st. Картинка про Язык программирования для плк st. Фото Язык программирования для плк st

Контролер – это управляющее устройство. Действительно функциональным он становится только тогда, когда вы создаете и запускаете программу по его использованию.

Отсюда вытекает главная задача программируемого логического контролера – исполнение программы, которая осуществляет руководство технологического процесса.

Какой набор программ доступен для ПЛК? В принципе любой набор возможен. Главное, чтобы размер свободных ресурсов, данного инструмента, вам был не помехой. Разработчик получает широкие возможности по написанию программ.

Что же необходимо, чтобы осуществить программирование контроллера? Во – первых нужен программист, который бы досконально разбирался в данном вопросе. Во – вторых необходим сам компьютер и конечно пакет разработки.

Функционал средств разработки

Обычно пакет разработки поставляется за дополнительную плату. Хотя в принципе часто встречается, что данный пакет уже изначально включен в программное обеспечение по инсталляции.

Какой функционал предлагает среда разработки?

И наконец необходимо отметить главное достоинство – это поддержка порядка шести языков программирования. Единственным недостатком является то, что совместимость программ реализована на низком уровне. Производители ПЛК не пришли к унификации и каждый выпускает, данное устройство, со своей программной средой.

Виды языков программирования для ПЛК

LD (Ladder) – это среда разработки, которая основана на графике. Своего рода, она представляет собой подобие релейной схемы. Разработчики данного стандарта считают, что использование такого вида программной среды существенно облегчает переобучение инженеров релейной автоматики на ПЛК.

К главным недостаткам, данного языка программирования, можно отнести неэффективность при обработке процессов с большим количеством аналоговых переменных, так как он построен для представления процессов с дискретным характером.

FBD ( Диаграмма Функциональных Блоков) – здесь также используется графическое программирование. Образно говоря, FBD определяет собой некую множественность функциональных блоков, которые имеют соединения между собой (вход и выход).

Данные связи являются переменными и выполняют пересылку между блоками. Каждый блок в отдельности может представлять определенную операцию( триггер, логическое “или” и т.д.). Переменные задаются с помощью определенных блоков, а цепи выхода могут иметь связи с конкретными выходами контроллера или связи с глобальными переменными.

SFC ( Sequential Function Chart) – может использоваться с языками ST и IL, он также основан на графике. Принцип его построения близок к образу конечного автомата, данное условие относит его к самым мощным языкам программирования.

Технологические процессы, в данном языке, построены по типу определенных шагов. Структура шагов состоит из вертикали, которая идет сверху вниз. Каждый шаг – это конкретные операции. Описать операцию можно не только с помощью SFC, но и с помощью ST и IL.

Как только шаг выполнен, то идет действие по передачи управления следующему шагу. Переход между шагами может быть двух видов. Если на шаге выполнено какое – то условие и дальнейшим действием является переход на следующий шаг, значит – это условный переход. В случае же, если происходит полное выполнение всех условий на данном шаге и только потом осуществляется переход на следующий шаг, то-это безусловный переход.

Недостатком SFC можно считать, что в процессе работы может быть активировано несколько шагов, не в параллельных потоках. Поэтому необходим глобальный контроль со стороны программиста.

ST ( Структурированный Текст) – относится к языкам высокого уровня и имеет много сходного с Pascal и Basic.

ST позволяет интерпретировать более шестнадцати типов данных и имеет возможность работать с логическими операциями, циклическими вычислениями и т.д.

Небольшим недостатком можно определить отсутствие графической среды. Программы представлены в виде текста и данное условие усложняет освоение технологии.

IL ( Список Команд) – язык подобен Ассемблеру, обычно используется для кодировки блоков по отдельности. Плюсом является то, что данные блоки имеют большую скорость работы и низкую требовательность к ресурсам.

CFC ( Continuous Flow Chart) – относится к языкам высокого уровня. В принципе – это явное продолжение языка FBD.

Процесс проектирования состоит из использования готовых блоков и размещения их на экране. Далее происходит их настройка и размещения соединений между ними.

Каждый блок – это управление определенным технологическим процессом. Здесь идет основной уклон на технологический процесс, математика уходит на второй план.

Источник

Общие сведения о языке ST¶

ST (Structured Text) – это текстовый язык высокого уровня общего назначения, по синтаксису схожий с языком Pascal. Удобен для программ, включающих числовой анализ или сложные алгоритмы. Может использоваться в программах, в теле функции или функционального блока, а также для описания действия и перехода внутри элементов SFC. Согласно IEC 61131-3 ключевые слова должны быть введены в символах верхнего регистра. Пробелы и метки табуляции не влияют на синтаксис, они могут использоваться везде.

Выражения в ST выглядят точно также, как и в языке Pascal:

Порядок их выполнения – справа налево. Выражения состоят из операндов и операторов. Операндом является литерал, переменная, структурированная переменная, компонент структурированной переменной, обращение к функции или прямой адрес.

Типы данных¶

Согласно стандарту IEC 61131-3, язык ST поддерживает весь необходимый набор типов, аналогичный классическим языкам программирования. Целочисленные типы: SINT (char), USINT (unsigned char), INT (short int), UINT (unsigned int), DINT (long), UDINT (unsigned long), LINT (64 бит целое), ULINT (64 бит целое без знака). Действительные типы: REAL (float), LREAL (double). Специальные типы BYTE, WORD, DWORD, LWORD представляют собой битовые строки длиной 8, 16, 32 и 64 бит соответственно. Битовых полей в ST нет. К битовым строкам можно непосредственно обращаться побитно. Например:

a.3 := 1; (* Установить бит 3 переменной a *)

Логический тип BOOL может иметь значение TRUE или FALSE. Физически переменная типа BOOL может соответствовать одному биту. Строка STRING является именно строкой, а не массивом. Есть возможность сравнивать и копировать строки стандартными операторами. Например:

Для работы со строками есть стандартный набор функций (см. приложение 2, раздел «Строковые операции с переменными типа STRING»).

Специальные типы в стандарте IEC определены для длительности (TIME), времени суток (TOD), календарной даты (DATE) и момента времени (DT).

В таблице 3.1 приведены значения по умолчанию, соответствующие описанным выше типам.

Таблица 3.1 – Значения по умолчанию для типов данных IEC 61131-3

Тип(ы) данныхЗначение
BOOL, SINT, INT, DINT, LINT0
USINT, UINT, UDINT, ULINT0
BYTE, WORD, DWORD, LWORD0
REAL, LREAL0.0
TIMET#0S
DATED#0001-01-01
TIME_OF_DAYTOD#00:00:00
DATE_AND_TIMEDT#0001-01-01-00:00:00
STRING‘’ (пустая строка)

По умолчанию, все переменные инициализируются нулем. Иное значение переменной можно указать явно при ее объявлении. Например:

str1: STRING := ‘Hello world’;

В определённых ситуациях при разработке программных модулей удобно использовать обобщения типов, т.е. общее именование группы типов данных. Данные обобщения приведены в таблице 3.2.

Таблица 3.2 – Обобщения типов данных IEC 61131-3

Источник

Языки программирования ПЛК и программная платформа автоматизации CoDeSys

Язык программирования для плк st. Смотреть фото Язык программирования для плк st. Смотреть картинку Язык программирования для плк st. Картинка про Язык программирования для плк st. Фото Язык программирования для плк stВозьмем для примера простейшую задачу: необходимо включить пресс через 1 секунду после одновременного удержания оператором двух кнопок в нажатом состоянии. Таким образом, мы гарантируем, что обе руки оператора заняты и даем ему время на контроль готовности машины. Самое простое решение это соединить контакты обеих кнопок последовательно и поставить электронное реле с таймером. Если таймер допускает регулировку времени задержки, то подобная схема обеспечит некоторую гибкость системы, впрочем не слишком высокую.

Но в условиях конкурентного производства время выхода нового продукта на рынок имеет решающее значение и поэтому когда речь идет о гибком автоматизированном производстве, переналадка оборудования должна выполняться быстро, с минимальными затратами.

Дополнительной проблемой является увеличение сложности системы управления по мере развития производства и появления дополнительных функций (усложнения алгоритма работы).

Любой специалист по автоматизации сталкивался также с проблемой построения системы управления для оборудования в той предметной области, которая ему недостаточно знакома: отсутствие четкой постановки задачи, появление новых условий по мере внедрения оборудования может сделать невозможной успешную реализацию проекта.

Необходимо было создать управляющее устройство, алгоритм работы которого можно было бы менять, не переделывая монтажную схему системы управления, и в результате возникла логичная идея заменить системы управления с «жесткой» логикой работы (совокупность реле, регуляторов, таймеров и т.д.) на автоматы с программно заданной логикой работы. Так родились программируемые логические контроллеры (ПЛК). Впервые ПЛК были применены в США для автоматизации конвейерного сборочного производства в автомобильной промышленности (1969 г.).

Поскольку в определении «программируемый логический контроллер» главным являлось «программируемый», то практически сразу возник вопрос, как программировать ПЛК?

Алгоритмические языки программирования компьютеров того времени были ориентированы на решение вычислительных задач. Профессия программиста считалась исключительно редкой и трудной, таких специалистов не было ни на одном производстве. Идеальным вариантом могла бы стать автоматическая трансляция принципиальных схем релейных автоматов в программы для ПЛК.

Почему бы и нет? Так в ПЛК появился язык релейно-контактных схем (РКС или LD в английских источниках Ladder Diagram). Специалист-технолог мог “перерисовать” схему управления на дисплее программирующей станции ПЛК. Естественно схема изображалась не графически а посредством условных символов.

Например, описанная выше задача могла бы быть запрограммирована так:

Язык программирования для плк st. Смотреть фото Язык программирования для плк st. Смотреть картинку Язык программирования для плк st. Картинка про Язык программирования для плк st. Фото Язык программирования для плк st

Слева и справа в такой программе мы видим вертикальные шины питания, соединенные горизонтальными цепями. Цепи могут состоять их контактов и некоторых дополнительных элементов (например, таймер) соединенных параллельно или последовательно. Справа каждая цепь заканчивается обмоткой реле. Контакты этого реле могут в свою очередь присутствовать в других цепях. Таким образом, можно составить достаточно сложную схему аналогичную по функциональности реальной релейной схеме.

Первые программирующие станции представляли собой весьма громоздкие устройства, транспортируемые силами нескольких человек. Тем не менее, ПЛК активно начали заменять еще более громоздкие и главное обладающие “жесткой” логикой шкафы релейной автоматики.

Физически ПЛК представляет собой один или несколько блоков, имеющих определенный набор выходов и входов, для подключения датчиков и исполнительных механизмов (см. рис.1).

Логика его работы описывается программно и выполняется встроенным микропроцессором. В результате, абсолютно одинаковые ПЛК могут выполнять совершенно разные функции. Для изменения алгоритма работы не требуется каких либо переделок аппаратной части.

Язык программирования для плк st. Смотреть фото Язык программирования для плк st. Смотреть картинку Язык программирования для плк st. Картинка про Язык программирования для плк st. Фото Язык программирования для плк st

Рис. 1. Принцип работы ПЛК

Написать более сложную программу с помощью встроенного пульта непросто. Аналогично мы легко можем набрать текст SMS на клавиатуре сотового телефона, но даже ввод нескольких страниц текста, не говоря уже о больших объемах, представляется проблематичным. Для этого существуют персональные компьютеры (PC), предоставляющие гораздо более комфортабельные условия работы человека.

Один современный ПЛК способен заменить десятки регуляторов, сотни таймеров и тысячи реле. Используя PC запрограммировать такую систему совсем не сложно. Применение PC в качестве программирующей станции ПЛК является сегодня доминирующим решением. Это не только упрощает программирование, но и решает задачи архивирования проектов, подготовки документации, визуализации и моделирования. Компьютер дает удобный универсальный инструмент как для программирования простейших локальных задач на ПЛК, так и для АСУ ТП.

Обратите внимание что, говоря о программировании ПЛК, мы все время возвращаемся к тому, как сделать этот процесс простым и удобным для человека. Казалось бы, однажды запрограммированный ПЛК будет работать годами и не очень важно будет ли его программа выглядеть красиво, главное чтобы она хорошо работала.

К сожалению, это не так. Необходимость изменения программы в ПЛК возникает регулярно иногда и непредвиденно. Поэтому, написана она должна быть так, чтобы любой человек, а не только ее автор мог в ней быстро разобраться и оперативно внести необходимые доработки. Говорить о том, что программы написаны для ПЛК, не вполне корректно.

Все программы написаны человеком и предназначены для чтения человеком. Любые инструменты программирования дают в конечном итоге микропроцессору инструкции в его машинных кодах. Для него нет разницы, на каком языке написана программа.

Упомянутый выше язык LD был изобретен в США в период релейной автоматизации. В Европу мода на ПЛК пришла несколько позднее, когда релейные шкафы были уже успешно заменены на шкафы с логическими микросхемами. Поэтому возникла необходимость изобретения других языков программирования понятных новому поколению инженеров.

Так в Германии появились языки простых текстовых инструкций напоминающих ассемблер (IL). Во Франции возникли графические языки функциональных блоковых диаграмм (FBD) и высокоуровневые диаграммы описания этапов и условий переходов (Графсет, современный SFC). Применялись также языки, используемые для программирования компьютеров (Pascal, Basic). В конце семидесятых годов сложилась крайне сложная ситуация.

Каждый изготовитель ПЛК (в том числе и в СССР) разрабатывал собственный язык программирования, поэтому ПЛК разных производителей были программно несовместимы, кроме того существовала проблема аппаратной несовместимости. Замена ПЛК на продукт другого изготовителя превратилась в огромную проблему. Покупатель ПЛК был вынужден использовать изделия только одной фирмы либо тратить силы на изучение разных языков и средства на приобретение соответствующих инструментов.

В итоге в 1979 году в рамках Международной Электротехнической Комиссии (МЭК) была создана специальная группа технических экспертов по проблемам ПЛК. Ей была поставлена задача выработать стандартные требования к аппаратным средствам, программному обеспечению, правилам монтажа, тестирования, документирования и средствам связи ПЛК.

В 1982 году был опубликован первый черновой вариант стандарта, который получил наименование МЭК 1131. Ввиду сложности получившегося документа, было решено разбить его на несколько частей, вопросам программирования посвящена третья часть стандарта “Языки программирования ПЛК”.

Поскольку с 1997 года МЭК перешел на 5 цифровые обозначения, в настоящее время правильное наименование международной версии части стандарта посвященной языкам программирования ПЛК – МЭК 61131-3. Рабочей группой МЭК было принято достаточно оригинальное решение. Из всего многообразия существовавших на момент разработки стандарта языков программирования ПЛК были выделены 5 языков, получивших наибольшее распространение.

Спецификации языков были доработаны, так что стало возможным использовать в программах написанных на любом из этих языков стандартизованный набор элементов и типов данных. Такой подход МЭК не раз подвергался критике, но время доказало правильность этого решения.

Реализация подобного подхода позволила привлечь к программированию одного и того же ПЛК специалистов различных областей знаний (и что особенно важно – различной квалификации): специалистов по релейной автоматике (и даже электриков), программирующих в LD, специалистов в области полупроводниковой схемотехники и автоматического регулирования для которых привычен язык FBD, программистов, имеющих опыт написания программ для компьютеров на языке ассемблера (ему соответствует язык IL для ПЛК), на языках высокого уровня (язык ST), даже далекие от программирования специалисты-технологи получили свой инструмент программирования – язык SFC.

Structured Text

Книга «Изучаем Structured Text МЭК 61131-3»: Ссылка на книгу

Хотя внедрение МЭК систем программирования и не позволило полностью отказаться от услуг профессиональных программистов (впрочем такая цель и не ставилась), но зато позволило снизить требования к квалификации и соответственно затраты на оплату труда программистов ПЛК. Стандартизация языков позволила (по крайней мере, частично) решить проблему зависимости пользователя ПЛК от конкретного изготовителя.

Все современные ПЛК оснащаются средствами МЭК 61131-3 программирования, что упрощает работу пользователям контроллеров (можно использовать ПЛК различных фирм без затрат на переучивание) и одновременно снимает ряд проблем для изготовителей ПЛК (можно использовать компоненты ПЛК других изготовителей).

Стандарт существенно расширил возможности на рынке труда специалиста, занимающегося программированием ПЛК. Подобно тому как автомеханик, имеющий стандартный набор инструментов, может браться за ремонт любого узла (кроме нестандартных) машины любой фирмы, так и специалист, изучивший языки МЭК 61131-3 сможет разобраться с программой любого современного ПЛК. Это позволило уменьшить как зависимость фирмы от специалиста по программированию ПЛК, так и специалиста от фирмы.

Язык программирования для плк st. Смотреть фото Язык программирования для плк st. Смотреть картинку Язык программирования для плк st. Картинка про Язык программирования для плк st. Фото Язык программирования для плк st

В России ПЛК с CoDeSys хорошо известны специалистам, диапазон продукции, выпускаемой под управлением этих ПЛК огромен CoDeSys включает 5 специализированных редакторов для каждого из стандартных языков программирования:

Список Инструкций (IL),

Функциональные блоковые диаграммы (FBD),

Релейно-контактные схемы (LD),

Структурированный текст (ST),

Последовательные функциональные схемы (SFC).

Язык программирования для плк st. Смотреть фото Язык программирования для плк st. Смотреть картинку Язык программирования для плк st. Картинка про Язык программирования для плк st. Фото Язык программирования для плк st

Редакторы поддержаны большим числом вспомогательных инструментов, ускоряющих ввод программ. Это ассистент ввода, автоматическое объявление переменных, интеллектуальная коррекция ввода, цветовое выделение и синтаксический контроль при вводе, масштабирование, автоматическое размещение и соединение графических элементов.

В одном проекте можно совмещать программы, написанные на нескольких языках МЭК либо использовать один из них. Никаких особых требований по выбору языка нет. Он обусловлен исключительно личными предпочтениями.

В России наиболее популярен язык ST. Это текстовый язык, представляющий собой несколько адаптированный Паскаль. Второе место по популярности занимает графический язык FBD, далее следует язык LD. Помимо средств подготовки программ, CoDeSys включает встроенный отладчик, эмулятор, инструменты визуализации и управления проектом, конфигураторы ПЛК и сети.

Воплощением еще одной неожиданной идеи, коллективно сформированной пользователями CoDeSys, стало добровольное объединение изготовителей ПЛК, поддерживающих CoDeSys, в некоммерческую организацию CoDeSys Automation Alliance (САА). Суть идеи в том, чтобы превратить изготовителей средств промышленной автоматизации, поддерживающих CoDeSys, в партнеров (насколько это возможно на конкурентном рынке) и нейтрализовать последствия конкуренции между изготовителями для пользователей ПЛК.

Вместо намеренного создания технических препятствий, не позволяющих пользователям легко использовать продукты другой компании, члены САА целенаправленно принимают меры призванные обеспечить совместимость своих продуктов.

Пользователь может быть уверен, что его прикладная CoDeSys-программа будет работать в любом контроллере любой компании являющейся членом САА. Пользователь может быть уверен, что используемые им инструменты (CoDeSys) проверены тысячами пользователей во всем мире. Пользователь всегда может обсудить свои затруднения и получить реальную помощь от широкого круга коллег, имевших опыт решения подобных задач.

Брокарев А.Ж., Петров И.В. Компания «ПРОЛОГ»

Источник

Язык программирования для плк st

Главная задача ПЛК – это выполнение прикладной программы управления технологическим процессом. Очевидно, что незапрограммированный контроллер – это всего лишь пустая железяка, не приносящая никакой пользы человечеству.

Какие программы может выполнять промышленный контроллер? Ответ прост: практически любые. Современный контроллер свободно программируем, т.е. предоставляет разработчику возможность создавать пользовательские программы произвольной структуры без ограничений их функциональности, будь то программа управления пастеризатором на молочном комбинате или управление колонной ректификации на НПЗ. По сути, единственным ограничением здесь может быть объем свободных ресурсов контроллера.

Что нужно, чтобы запрограммировать ПЛК? Грамотный специалист. Во-вторых, персональный компьютер или портативный программатор, подключенный к контроллеру по сети. В-третьих, программный пакет разработки, поставляемый, как правило, за дополнительную плату. Иногда среда разработки входит в состав комплексного ПО для инсталляции и эксплуатации всей системы управления.

Современные средства разработки чрезвычайно функциональны и предлагают разработчику множество возможностей:

1. Разнообразные программные библиотеки, функциональные блоки, готовые процедуры и шаблоны. Использование предподготовленных компонентов сильно ускоряет процесс разработки программного обеспечения для ПЛК.

2. Инструменты для отладки, тестирования и симуляции прикладной программы. Последние позволяют выполнять программу ПЛК на персональном компьютере без загрузки в реальный контроллер.

3. Инструменты для автоматизированного документирования разработанной программы в соответствие с принятыми стандартами.

Но у программиста есть и более мощный инструмент. Дело в том, что современные средства разработки прикладного ПО для промышленных контроллеров, как правило, поддерживают до шести разных языков программирования.

Существует международный стандарт IEC 61131, разработанный Международной Электротехнической Комиссией (МЭК, IEC) и состоящий из восьми частей. Наиболее интересной является третья часть, IEC 61131-3, описывающая языки программирования ПЛК. Первоначальной целью стандарта IEC 61131-3 была унификация языков программирования ПЛК и предоставление разработчикам ряда аппаратно-независимых языков, что, по замыслу создателей стандарта, обеспечило бы простую переносимость программ между различными аппаратными платформами и снимало бы необходимость изучения новых языков и средств программирования при переходе разработчика на новый ПЛК.

К сожалению, цели в полном объеме достигнуты не были. Каждый производитель ПЛК сопровождает свой продукт собственной средой программирования, которая, как правило, не совместима с другими, да и о кросс-платформенности программного кода можно забыть. Тем не менее, в части описания языков программирования стандарт IEC 61131 остается чрезвычайно актуальным и является ориентиром для большинства разработчиков ПЛК.

Какие языки используются для программирования промышленных контроллеров? Ниже приведен краткий обзор языков стандарта.

Язык LD

Язык LD (LAD, Ladder) является графическим языком разработки, программа на котором представляет собой аналог релейной схемы. Пример программы на данном языке приведен на рис. 1. По идеи авторов стандарта, такая форма представления программы облегчит переход инженеров из области релейной автоматики на ПЛК.

К недостаткам данного языка можно отнести то, что по мере увеличения количества «реле» в схеме она становится сложнее для интерпретации, анализа и откладки. Еще один недостаток языка LD заключается в следующем: язык, построенный по аналогии с релейными схемами, может быть эффективно использован только для описания процессов, имеющих дискретный (двоичный) характер; для обработки «непрерывных» процессов (с множеством аналоговых переменных) такой подход теряет смысл.

Рис. 1. Язык релейных диаграмм LD.

Язык FBD

Язык FBD (Functional Block Diagram, Диаграмма Функциональных Блоков) является языком графического программирования, так же, как и LD, использующий аналогию с электрической (электронной) схемой. Программа на языке FBD представляет собой совокупность функциональных блоков (functional flocks, FBs), входа и выхода которых соединены линиями связи (connections). Эти связи, соединяющие выхода одних блоков с входами других, являются по сути дела переменными программы и служат для пересылки данных между блоками. Каждый блок представляет собой математическую операцию (сложение, умножение, триггер, логическое “или” и т.д.) и может иметь, в общем случае, произвольное количество входов и выходов. Начальные значения переменных задаются с помощью специальных блоков – входов или констант, выходные цепи могут быть связаны либо с физическими выходами контроллера, либо с глобальными переменными программы. Пример фрагмента программы на языке FBD приведен на рис. 2.

Практика показывает, что FBD является наиболее распространенным языком стандарта IEC. Графическая форма представления алгоритма, простота в использовании, повторное использование функциональных диаграмм и библиотеки функциональных блоков делают язык FBD незаменимым при разработке программного обеспечения ПЛК. Вместе с тем, нельзя не заметить и некоторые недостатки FBD. Хотя FBD обеспечивает легкое представление функций обработки как «непрерывных» сигналов, в частности, функций регулирования, так и логических функций, в нем неудобным и неочевидным образом реализуются те участки программы, которые было бы удобно представить в виде конечного автомата.

Рис.2. Функциональная схема FBD.

Язык SFC

Язык последовательных функциональных схем SFC (Sequential Function Chart), использующийся совместно с другими языками (обычно с ST и IL), является графическим языком, в котором программа описывается в виде схематической последовательности шагов, объединенных переходами. Язык SFC построен по принципу, близкому к концепции конечного автомата, что делает его одним из самых мощных языков программирования стандарта IEC 61131-3. Пример программы на языке SFC приведен на рис. 3.

Наиболее простым и естественным образом на языке SFC описываются технологические процессы, состоящие из последовательно выполняемых шагов, с возможностью описания нескольких параллельно выполняющихся процессов, для чего в языке имеются специальные символы разветвления и слияния потоков (дивергенции и конвергенции, в терминах стандарта IEC 61131-3).

Шаги последовательности располагаются вертикально сверху вниз. На каждом шаге выполняется определенный перечень действий (операций). При этом для описания самой операции используются другие языки программирования, такие как IL или ST.

Действия (операции) в шагах имеют специальные классификаторы, определяющие способ их выполнения внутри шага: циклическое выполнение, однократное выполнение, однократное выполнение при входе в шаг и т.д. В сумме таких классификаторов насчитывается девять, причем среди них есть, например, классификаторы так называемых сохраняемых и отложенных действий, заставляющие действие выполняться даже после выхода программы из шага.

После того, как шаг выполнен, управление передается следующему за ним шагу. Переход между шагами может быть условным и безусловным. Условный переход требует выполнение определенного логического условия для передачи управления на следующий шаг; пока это условие не выполнено программа будет оставаться внутри текущего шага, даже если все операции внутри шага уже выполнены. Безусловный переход происходит всегда после полного выполнения всех операций на данном шаге. С помощью переходов можно осуществлять разделение и слияние ветвей последовательности, организовать параллельную обработку нескольких ветвей или заставить одну выполненную ветвь ждать завершения другой.

Как и любому другому языку, SFC свойственны некоторые недостатки. Хотя SFC может быть использован для моделирования конечных автоматов, его программная модель не совсем удобна для этого. Это связано с тем, что текущее состояние программы определяется не переменной состояния, а набором флагов активности каждого шага, в связи с чем при недостаточном контроле со стороны программиста могут оказаться одновременно активными несколько шагов, не находящихся в параллельных потоках.

Еще одно неудобство языка связано с тем, что шаги графически располагаются сверху вниз, и переход, идущий в обратном направлении, изображается в неявной форме, в виде стрелки с номером состояния, в которое осуществляется переход.

Рис. 3. Язык последовательных функциональных схем SFC.

Язык ST

Язык ST (Structured Text, Структурированный Текст) представляет собой язык высокого уровня, имеющий черты языков Pascal и Basic. Данный язык имеет те же недостатки, что и IL, однако они выражены в меньшей степени. Пример программы на языке ST приведен на рис. 4.

С помощью ST можно легко реализовывать арифметические и логические операции (в том числе, побитовые), безусловные и условные переходы, циклические вычисления; возможно использование как библиотечных, так и пользовательских функций. Язык также интерпретирует более 16 типов данных.

Язык ST может быть освоен технологом за короткий срок, однако текстовая форма представления программ служит сдерживающим фактором при разработке сложных систем, так как не дает наглядного представления ни о структуре программы, ни о происходящих в ней процессах.

Рис. 4. Язык структурированного текста ST.

Язык IL

Язык IL (Instruction List, Список Команд) представляет собой ассемблероподобный язык, достаточно несложный по замыслу авторов стандарта, для его практического применения в задачах промышленной автоматизации пользователем, не имеющим, с одной стороны, профессиональной подготовки в области программирования, с другой стороны, являющимся специалистом в той или иной области производства. Однако, как показывает практика, такой подход себя не оправдывает.

Ввиду своей ненаглядности, IL практически не используется для программирования комплексных алгоритмов автоматизированного управления, но часто применяется для кодирования отдельных функциональных блоков, из которых впоследствии складываются схемы FBD или CFC. При этом IL позволяет достичь высокой оптимальности кода: программные блоки, написанные на IL, имеют высокую скорость исполнения и наименее требовательны к ресурсам контроллера.

Язык IL имеет все недостатки, которые присущи другим низкоуровневым языкам программирования: сложность и высокую трудоемкость программирования, трудность модификации написанных на нем программ, малую степень «видимого» соответствия исходного текста программы и решаемой задачи.

Пример программы на языке IL приведен на рис. 5.

Рис. 5. Язык инструкций IL.

Многие производители инструментальных средств, опирающиеся на стандарт IEC, не ограничиваются поддержкой рассмотренных выше пяти языков стандарта. Можно выделить, как минимум, еще один язык визуального программирования, который довольно популярен среди разработчиков.

Язык CFC

Язык CFC (Continuous Flow Chart) – еще один высокоуровневый язык визуального программирования. По сути, CFC – это дальнейшее развития языка FBD. Этот язык был специально создан для проектирования систем управления непрерывными технологическими процессами.

Проектирование сводится к выбору из библиотек готовых функциональных блоков, их позиционированию на экране, установке соединений между их входами и выходами, а также настройке параметров выбранных блоков. В отличие от FBD, функциональные блоки языка CFC выполняют не только простые математические операции, а ориентированы на управление целыми технологическими единицами. Так в типовой библиотеке CFC блоков находятся комплексные функциональные блоки, реализующие управление клапанами, моторами, насосами; блоки, генерирующие аварийные сигнализации; блоки PID-регулирования и т.д. Вместе с тем доступны и стандартные блоки FBD. Унаследовав от FBD саму концепцию программирования, язык CFC в наибольшей степени ориентирован на сам технологический процесс, позволяя разработчику абстрагироваться от сложного математического аппарата.

Рис. 6. Среда проектирования на языке CFC системы Simatic PCS7.

CFC прост в освоении, и при этом позволяет разрабатывать сложнейшие алгоритмы автоматизированного управления без каких-либо специфических знаний других языков программирования.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *