Язык программирования это система программирования

Языки программирования: что это такое, зачем нужны и какой выбрать новичку

Разбираемся, как устроены языки программирования, почему их так много и чем они отличаются от алгоритмов.

Что такое язык программирования

Язык программирования — это набор формальных правил, по которым пишут программы. Обычный язык нужен для общения людей, а язык программирования — для общения с компьютером. Как и в любом естественном языке, тут есть лексика — слова, функции и операторы, из которых по правилам синтаксиса составляются выражения. Они имеют чёткий, вполне определённый смысл, понятный компьютеру, — семантику.

Вот, например, программа на языке JavaScript:

Здесь слово alert — лексика, один из принятых в языке методов обработки текста. Текст в одинарных кавычках, скобки, точка с запятой — правила синтаксиса. А то, что нужно сделать в итоге, — семантика. Получив эти инструкции, компьютер выведет на экран всплывающее окно с кнопкой и сообщением: «Это программа на JavaScript».

Язык программирования это система программирования. Смотреть фото Язык программирования это система программирования. Смотреть картинку Язык программирования это система программирования. Картинка про Язык программирования это система программирования. Фото Язык программирования это система программирования

Язык программирования это система программирования. Смотреть фото Язык программирования это система программирования. Смотреть картинку Язык программирования это система программирования. Картинка про Язык программирования это система программирования. Фото Язык программирования это система программирования

Фанат Free Software Foundation, использую Linux и недолюбливаю Windows. Пишу истории про кодинг и программы на Python. Влюблен в LISP, но пока что не умею на нем программировать.

Чем языки программирования отличаются от алгоритмов

Программы нужны для того, чтобы машина сделала что-то полезное. Это невозможно, если нет чёткого порядка действий и правил их выполнения — алгоритма.

Алгоритм работает как маршрут в навигаторе: «Из пункта А едем в пункт Б, поворот через 150 метров». Англичанин понимает его по-английски, китаец —
по-китайски, а мы с вами — по-русски. Языки разные, а порядок действий один и все должны добраться до нужного места.

Любая программа начинается с алгоритма, но на разных языках это может выглядеть по-разному. Например, вот эта — на языке С — проверяет, чтобы делитель не был нулём, а затем делит одно число на другое. Или пишет, что так делать нельзя.

То же самое, но на Python.

В программе на Python нет фигурных скобок и точек с запятой, но алгоритм и результат работы такой же, как у программы на C, да и слова похожи.

Перейти с одного языка программирования на другой легко: если знаешь Java — быстро начнёшь кодить, например, на Python или C#.

Как компьютер понимает разные языки программирования

На самом деле язык программирования — это не язык компьютера. Машина понимает последовательности нулей и единичек: есть напряжение в цепи — единица, нет — ноль. Поэтому любую программу сначала надо перевести в набор таких машинных команд.

Для этого есть два инструмента — компилятор и интерпретатор. Компилятор работает как бюро переводов: вы отдаёте ему весь текст программы, а он превращает его в исполняемый код, набор команд для процессора. Интерпретатор больше похож на переводчика-синхрониста: сказали фразу — синхронист тут же её перевёл, а компьютер выполнил.

Внутри компиляторов и интерпретаторов — сложные наборы правил по превращению языка программирования в машинный код, понятный компьютеру. Это тоже программы. Их пишут создатели нового языка — на каком-то другом, уже существующем. Например, интерпретатор Python написан на C, а сам C — на ассемблере, практически машинном коде.

Что такое библиотеки

Библиотеки — наборы функций, готовых шаблонов, написанных на каком-то из языков программирования. Это удобно и похоже на книги в обычной библиотеке: на них можно ссылаться внутри программ и сразу получать результат без необходимости каждый раз писать много кода.

Например, в Python есть модуль — библиотека yandex_translate, которая переводит тексты на разные языки. Программистам не надо создавать программу-переводчик с нуля, достаточно подключить этот модуль и обратиться к нему из любой точки кода.

Источник

Системы программирования

Что такое система программирования

Система программирования — это система для разработки новых программ на конкретном языке программирования.

Специалисты с помощью сервисных возможностей систем программирования могут разрабатывать собственные компьютерные программы. При этом компьютерная программа состоит из совокупности указаний автоматизированной вычислительной системы, в результате выполнения которой получается требуемый результат.

Наиболее полное определение системы программирования и ее составляющих представлено в документе ГОСТ 19781-90. Согласно ему:

Система программирования — система, образуемая языком программирования, компиляторами или интерпретаторами программ, представленных на этом языке, соответствующей документацией, а также вспомогательными средствами для подготовки программ к форме, пригодной для выполнения.

Системы программирования позволяют программистам заниматься разработкой компьютерных программ. Данная задача значительно облегчается совершенствованием систем программирования, в которых постоянно расширяются пользовательские возможности, создается удобная среда для работы и оптимизируется процесс разработки программ.

Что входит в состав комплекса, основные компоненты

Система программирования обычно включает в себя следующие компоненты:

Компилятор — это особый вид транслятора, который переводит тексты с языка программирования высокого уровня (с того языка, которым пользуется программист при написании текста программы) на машинный язык (в машинный код, который понятен компьютеру).

Например, если пользователь пишет код на языке высокого уровня, таком как Java, и хочет его выполнить, то ему необходимо использовать специальный компилятор, разработанный для Java. Он занимается сканированием всей программы, транслированием ее в машинный код, который выполняется процессором компьютера, после чего выполняются необходимые задачи.

Интерпретатор — это исполняемый файл, который поэтапно читает программу, а затем обрабатывает, сразу выполняя ее инструкции. Он осуществляет программу поэтапно как часть собственного исполняемого файла.

Каждый раз, когда интерпретатор получает на выполнение код языка высокого уровня, то перед его конвертацией в машинный код, он преобразовывает этот код в промежуточный язык. Части кода последовательно интерпретируются и выполняются отдельно; при нахождении ошибок в составляющих кода процесс интерпретации останавливается.

Основные отличия компилятора от интерпретатора:

Интегрированная среда разработки — это набор инструментов для разработки и отладки программ, имеющий общую интерактивную графическую оболочку, поддерживающую выполнение всех основных функций жизненного цикла разработки программы.

Функции жизненного цикла разработки программы:

Основные компоненты интегрированной среды разработки:

Компоновщик — инструментальная программа, которая производит компоновку («линковку»): принимает на вход один или несколько объектных модулей и собирает из них исполняемый или библиотечный файл-модуль.

В системе программирования компоновщик необходим для связывания объектного и машинного кодов, а также подготовки объектной программы (файла) к работе в конкретной программной среде.

Библиотеки стандартных программ и функций состоят из совокупности подпрограмм, составленных на одном из языков программирования и удовлетворяющих определенным единым требованиям к структуре, организации их входов и выходов, описаниям подпрограмм.

Важным компонентом понятия системы программирования являются отладочные программы.

Отладка — этап разработки компьютерной программы, на котором обнаруживают, локализуют и устраняют ошибки.

Программный модуль отладки позволяет выполнить основные задачи, связанные с мониторингом процесса выполнения результирующей прикладной программы. Отладка позволяет последовательно и пошагово выполнять итоговые программы, просматривать значения объявленных переменных, устанавливать контрольные точки, трассировку для того, чтобы идентифицировать места и виды ошибок в разработке.

Справочная система, входящая в состав системы программирования, предназначена для предоставления пользователю справочной информации по конкретной системе программирования.

Машинно-ориентированные системы программирования

Классификация машинно-ориентированных систем:

Машинно-независимые системы программирования

Машинно-независимые системы программирования — системы, позволяющие описывать алгоритмы решения задач и информацию, подлежащую обработке. Системы часто используются в широких кругах пользователей и не требуют особых знаний организации функционирования ЭВМ.

Виды языков программирования в машинно-независимых системах:

Процедурно-ориентированные являются основными языками описания алгоритмов, которые обеспечивают математические функции многих современных вычислительных машин.

Они включают в себя такие популярные языки как:

Проблемно-ориентированные языки — это формальные языки, предназначенные для описания данных (информации) и алгоритмов их обработки (программ) на вычислительной машине.

Основные проблемно-ориентированные языки:

Объектно-ориентированное программирование основано на методологии представления программы в виде совокупности объектов, каждый из которых является экземпляром определенного класса, а классы образуют иерархию наследования.

Примеры объектно-ориентированных языков:

Примеры систем программирования

Актуальные системы программирования:

Источник

Язык программирования

Язы́к программи́рования — формальная знаковая система, предназначенная для записи компьютерных программ. Язык программирования определяет набор лексических, синтаксических и семантических правил, задающих внешний вид программы и действия, которые выполнит исполнитель (компьютер) под её управлением.

Со времени создания первых программируемых машин человечество придумало более двух с половиной тысяч языков программирования. [1] Каждый год их число увеличивается. Некоторыми языками умеет пользоваться только небольшое число их собственных разработчиков, другие становятся известны миллионам людей. Профессиональные программисты иногда применяют в своей работе более десятка разнообразных языков программирования.

Создатели языков по-разному толкуют понятие язык программирования. К наиболее распространённым утверждениям, признаваемым большинством разработчиков, относятся следующие: [источник не указан 1249 дней]

Содержание

Стандартизация языков программирования

Язык программирования может быть представлен в виде набора спецификаций, определяющих его синтаксис и семантику.

Для многих широко распространённых языков программирования созданы международные стандарты. Специальные организации проводят регулярное обновление и публикацию спецификаций и формальных определений соответствующего языка. В рамках таких комитетов продолжается разработка и модернизация языков программирования и решаются вопросы о расширении или поддержке уже существующих и новых языковых конструкций.

Типы данных

Современные цифровые компьютеры обычно являются двоичными и данные хранят в двоичном (бинарном) коде (хотя возможны реализации и в других системах счисления). Эти данные как правило отражают информацию из реального мира (имена, банковские счета, измерения и др.), представляющую высокоуровневые концепции.

Особая система, по которой данные организуются в программе, — это система типов языка программирования; разработка и изучение систем типов известна под названием теория типов. Языки могут быть классифицированы как системы со статической типизацией и языки с динамической типизацией.

Статически-типизированные языки могут быть в дальнейшем подразделены на языки с обязательной декларацией, где каждая переменная и объявление функции имеет обязательное объявление типа, и языки с выводимыми типами. Иногда динамически-типизированные языки называются латентно-типизированными.

Структуры данных

Системы типов в языках высокого уровня позволяют определять сложные, составные типы, так называемые структуры данных. Как правило, структурные типы данных образуются как декартово произведение базовых (атомарных) типов и ранее определённых составных типов.

Основные структуры данных (списки, очереди, хеш-таблицы, двоичные деревья и пары) часто представлены особыми синтаксическими конструкциями в языках высокого уровня. Такие данные структурируются автоматически.

Семантика языков программирования

Существует несколько подходов к определению семантики языков программирования.

Наиболее широко распространены разновидности следующих трёх: операционного, деривационного (аксиоматического) и денотационного (математического).

Парадигма программирования

Язык программирования строится в соответствии с той или иной базовой моделью вычислений и парадигмой программирования.

Несмотря на то, что большинство языков ориентировано на императивную модель вычислений, задаваемую фон-неймановской архитектурой ЭВМ, существуют и другие подходы. Можно упомянуть языки со стековой вычислительной моделью (Форт, Factor, PostScript и др.), а также функциональное (Лисп, Haskell, ML, F# и др.) и логическое программирование (Пролог) и язык РЕФАЛ, основанный на модели вычислений, введённой советским математиком А. А. Марковым-младшим.

В настоящее время также активно развиваются проблемно-ориентированные, декларативные и визуальные языки программирования.

Способы реализации языков

Языки программирования могут быть реализованы как компилируемые и интерпретируемые.

Программа на компилируемом языке при помощи компилятора (особой программы) преобразуется (компилируется) в машинный код (набор инструкций) для данного типа процессора и далее собирается в исполнимый модуль, который может быть запущен на исполнение как отдельная программа. Другими словами, компилятор переводит исходный текст программы с языка программирования высокого уровня в двоичные коды инструкций процессора.

Если программа написана на интерпретируемом языке, то интерпретатор непосредственно выполняет (интерпретирует) исходный текст без предварительного перевода. При этом программа остаётся на исходном языке и не может быть запущена без интерпретатора. Процессор компьютера, в этой связи, можно назвать интерпретатором для машинного кода.

Разделение на компилируемые и интерпретируемые языки является условным. Так, для любого традиционно компилируемого языка, как, например, Паскаль, можно написать интерпретатор. Кроме того, большинство современных «чистых» интерпретаторов не исполняют конструкции языка непосредственно, а компилируют их в некоторое высокоуровневое промежуточное представление (например, с разыменованием переменных и раскрытием макросов).

Для любого интерпретируемого языка можно создать компилятор — например, язык Лисп, изначально интерпретируемый, может компилироваться без каких бы то ни было ограничений. Создаваемый во время исполнения программы код может так же динамически компилироваться во время исполнения.

Как правило, скомпилированные программы выполняются быстрее и не требуют для выполнения дополнительных программ, так как уже переведены на машинный язык. Вместе с тем, при каждом изменении текста программы требуется её перекомпиляция, что замедляет процесс разработки. Кроме того, скомпилированная программа может выполняться только на том же типе компьютеров и, как правило, под той же операционной системой, на которую был рассчитан компилятор. Чтобы создать исполняемый файл для машины другого типа, требуется новая компиляция.

Интерпретируемые языки обладают некоторыми специфическими дополнительными возможностями (см. выше), кроме того, программы на них можно запускать сразу же после изменения, что облегчает разработку. Программа на интерпретируемом языке может быть зачастую запущена на разных типах машин и операционных систем без дополнительных усилий.

Однако интерпретируемые программы выполняются заметно медленнее, чем компилируемые, кроме того, они не могут выполняться без программы-интерпретатора.

Некоторые языки, например, Java и C#, находятся между компилируемыми и интерпретируемыми. А именно, программа компилируется не в машинный язык, а в машинно-независимый код низкого уровня, байт-код. Далее байт-код выполняется виртуальной машиной. Для выполнения байт-кода обычно используется интерпретация, хотя отдельные его части для ускорения работы программы могут быть транслированы в машинный код непосредственно во время выполнения программы по технологии компиляции «на лету» (Just-in-time compilation, JIT). Для Java байт-код исполняется виртуальной машиной Java (Java Virtual Machine, JVM), для C# — Common Language Runtime.

Подобный подход в некотором смысле позволяет использовать плюсы как интерпретаторов, так и компиляторов. Следует упомянуть, что есть языки, имеющие и интерпретатор, и компилятор (Форт).

Используемые символы

Современные языки программирования рассчитаны на использование ASCII, то есть доступность всех графических символов ASCII является необходимым и достаточным условием для записи любых конструкций языка. Управляющие символы ASCII используются ограниченно: допускаются только возврат каретки CR, перевод строки LF и горизонтальная табуляция HT (иногда также вертикальная табуляция VT и переход к следующей странице FF).

Заметным исключением является язык APL, в котором используется очень много специальных символов.

Использование символов за пределами ASCII (например, символов KOI8-R или символов Юникода) зависит от реализации: иногда они разрешаются только в комментариях и символьных/строковых константах, а иногда и в идентификаторах. В СССР существовали языки, где все ключевые слова писались русскими буквами, но большу́ю популярность подобные языки не завоевали (исключение составляет Встроенный язык программирования 1С:Предприятие).

Расширение набора используемых символов сдерживается тем, что многие проекты по разработке программного обеспечения являются международными. Очень сложно было бы работать с кодом, где имена одних переменных записаны русскими буквами, других — арабскими, а третьих — китайскими иероглифами. Вместе с тем, для работы с текстовыми данными языки программирования нового поколения (Delphi 2006, C#, Java) поддерживают Unicode.

Источник

Языки программирования

Язы́к программи́рования — формальная знаковая система, предназначенная для записи компьютерных программ. Язык программирования определяет набор лексических, синтаксических и семантических правил, задающих внешний вид программы и действия, которые выполнит исполнитель (компьютер) под ее управлением.

Со времени создания первых программируемых машин человечество придумало уже более восьми с половиной тысяч языков программирования. Каждый год их число пополняется новыми. Некоторыми языками умеет пользоваться только небольшое число их собственных разработчиков, другие становятся известны миллионам людей. Профессиональные программисты иногда применяют в своей работе более десятка разнообразных языков программирования.

Создатели языков по-разному толкуют понятие язык программирования. К наиболее распространённым утверждениям, признаваемым большинством разработчиков, относятся следующие:

Содержание

Стандартизация языков программирования [ править | править код ]

Язык программирования может быть представлен в виде набора спецификаций, определяющих его синтаксис и семантику.

Для многих широко распространённых языков программирования созданы международные стандарты. Специальные организации проводят регулярное обновление и публикацию спецификаций и формальных определений соответствующего языка. В рамках таких комитетов продолжается разработка и модернизация языков программирования и решаются вопросы о расширении или поддержке уже существующих и новых языковых конструкций.

Типы данных [ править | править код ]

Современные цифровые компьютеры обычно являются двоичными и данные хранят в двоичном (бинарном) коде (хотя возможны реализации и в других системах счисления). Эти данные как правило отражают информацию из реального мира (имена, банковские счета, измерения и др.), представляющую высокоуровневые концепции.

Особая система, по которой данные организуются в программе, — это система типов языка программирования; разработка и изучение систем типов известна под названием теория типов. Языки могут быть классифицированы как системы со статической типизацией и языки с динамической типизацией.

Статически-типизированные языки могут быть в дальнейшем подразделены на языки с обязательной декларацией, где каждая переменная и объявление функции имеет обязательное объявление типа, и языки с выводимыми типами. Иногда динамически-типизированные языки называются латентно-типизированными.

Структуры данных [ править | править код ]

Системы типов в языках высокого уровня позволяют определять сложные, составные типы, так называемые структуры данных. Как правило, структурные типы данных образуются как декартово произведение базовых (атомарных) типов и ранее определённых составных типов.

Основные структуры данных (списки, очереди, хеш-таблицы, двоичные деревья и пары) часто представлены особыми синтаксическими конструкциями в языках высокого уровня. Такие данные структурируются автоматически.

Семантика языков программирования [ править | править код ]

Существует несколько подходов к определению семантики языков программирования.

Наиболее широко распространены разновидности следующих трёх: операционного, денотационного (математического) и деривационного (аксиоматического).

При описании семантики в рамкахоперационного подхода обычно исполнение конструкций языка программирования интерпретируется с помощью некоторой воображаемой (абстрактной) ЭВМ.

Деривационная семантика описывает последствия выполнения конструкций языка с помощью языка логики и задания пред- и постусловий.

Денотационная семантика оперирует понятиями, типичными для математики— множества, соответствия, а также суждения, утверждения и др.

Парадигма программирования [ править | править код ]

Язык программирования строится в соответствии с той или иной базовой вычислений и парадигмой программирования.

Несмотря на то, что большинство языков ориентировано на императивную модель вычислений, задаваемую фон-неймановской архитектурой ЭВМ, существуют и другие подходы. Можно упомянуть языки со стековой вычислительной моделью (Forth, Factor, Postscript и др.), а также функциональное (Лисп, Haskell, ML и др.) и логическое программирование (Пролог) и язык Рефал, основанный на модели вычислений, введённой советским математиком А. А. Марковым-младшим.

В настоящее время также активно развиваются проблемно-ориентированные, декларативные и визуальные языки программирования.

Способы реализации языков [ править | править код ]

Языки программирования могут быть реализованы как компилируемые и интерпретируемые.

Программа на компилируемом языке при помощи специальной программы компилятора преобразуется (компилируется) в набор инструкций для данного типа процессора (машинный код) и далее записывается в исполнимый модуль, который может быть запущен на выполнение как отдельная программа. Другими словами, компилятор переводит исходный текст программы с языка программирования высокого уровня в двоичные коды инструкций процессора.

Если программа написана на интерпретируемом языке, то интерпретатор непосредственно выполняет (интерпретирует) исходный текст без предварительного перевода. При этом программа остаётся на исходном языке и не может быть запущена без интерпретатора. Можно сказать, что процессор компьютера — это интерпретатор машинного кода.

Кратко говоря, компилятор переводит исходный текст программы на машинный язык сразу и целиком, создавая при этом отдельную машинно-исполняемую программу, а интерпретатор выполняет исходный текст прямо во время исполнения программы («интерпретируя» его своими средствами).

Разделение на компилируемые и интерпретируемые языки является условным. Так, для любого традиционно компилируемого языка, как, например, Паскаль, можно написать интерпретатор. Кроме того, большинство современных «чистых» интерпретаторов не исполняют конструкции языка непосредственно, а компилируют их в некоторое высокоуровневое промежуточное представление (например, с разыменованием переменных и раскрытием макросов).

Для любого интерпретируемого языка можно создать компилятор — например, язык Лисп, изначально интерпретируемый, может компилироваться без каких бы то ни было ограничений. Создаваемый во время исполнения программы код может так же динамически компилироваться во время исполнения.

Как правило, скомпилированные программы выполняются быстрее и не требуют для выполнения дополнительных программ, так как уже переведены на машинный язык. Вместе с тем, при каждом изменении текста программы требуется её перекомпиляция, что создаёт трудности при разработке. Кроме того, скомпилированная программа может выполняться только на том же типе компьютеров и, как правило, под той же операционной системой, на которую был рассчитан компилятор. Чтобы создать исполняемый файл для машины другого типа, требуется новая компиляция.

Интерпретируемые языки обладают некоторыми специфическими дополнительными возможностями (см. выше), кроме того, программы на них можно запускать сразу же после изменения, что облегчает разработку. Программа на интерпретируемом языке может быть зачастую запущена на разных типах машин и операционных систем без дополнительных усилий.

Однако интерпретируемые программы выполняются заметно медленнее, чем компилируемые, кроме того, они не могут выполняться без дополнительной программы-интерпретатора.

Некоторые языки, например, Java и C#, находятся между компилируемыми и интерпретируемыми. А именно, программа компилируется не в машинный язык, а в машинно-независимый код низкого уровня, байт-код. Далее байт-код выполняется виртуальной машиной. Для выполнения байт-кода обычно используется интерпретация, хотя отдельные его части для ускорения работы программы могут быть транслированы в машинный код непосредственно во время выполнения программы по технологии компиляции «на лету» (Just-in-time compilation, JIT). Для Java байт-код исполняется виртуальной машиной Java (Java Virtual Machine, JVM), для C# — Common Language Runtime.

Подобный подход в некотором смысле позволяет использовать плюсы как интерпретаторов, так и компиляторов. Следует упомянуть также язык Forth, имеющий и интерпретатор, и компилятор.

Используемые символы [ править | править код ]

Современные языки программирования рассчитаны на использование ASCll, то есть доступность всехграфических символов ASCII является необходимым и достаточным условием для записи любых конструкций языка. Управляющие символы ASCII используются ограниченно: допускаются только возврат каретки CR, перевод строки LF и горизонтальная табуляция HT (иногда также вертикальная табуляция VT и переход к следующей странице FF).

Заметным исключением является язык APL, в котором используется очень много специальных символов.

Использование символов за пределами ASCII (например, символов KOI8-R или символов Юникода) зависит от реализации: иногда они разрешаются только в комментариях и символьных/строковых константах, а иногда и в идентификаторах. ВСССР существовали языки, где все ключевые слова писались русскими буквами, но большу́ю популярность подобные языки не завоевали (исключение составляет Встроенный язык программирования 1С: Предприятие).

Расширение набора используемых символов сдерживается тем, что многие проекты по разработке программного обеспечения являются международными. Очень сложно было бы работать с кодом, где имена одних переменных записаны русскими буквами, других — арабскими, а третьих — китайскими иероглифами. Вместе с тем, для работы с текстовыми данными языки программирования нового поколения (Delphi 2006, C#, Java) поддерживают unicode.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *