Как подключить трехфазный двигатель к постоянному току

Варианты подключения 3-х фазного двигателя к электросети

Как подключить трехфазный двигатель к постоянному току. Смотреть фото Как подключить трехфазный двигатель к постоянному току. Смотреть картинку Как подключить трехфазный двигатель к постоянному току. Картинка про Как подключить трехфазный двигатель к постоянному току. Фото Как подключить трехфазный двигатель к постоянному току

Асинхронные трехфазные двигатели распространены в производстве и быту. Особенность заключается в том, что подсоединить их можно как к трехфазной, так и однофазной сети. В случае с однофазными моторами это невозможно: они работают только при питании от 220В. А какие существуют способы подключения двигателя 380 Вольт? Рассмотрим, как соединять статорные намотки в зависимости от количества фаз в электросети с использованием иллюстраций и обучающего видео.

Подключение трехфазного двигателя к сети 380В

Различают две базовые схемы (видео и схемы в следующем подразделе статьи):

Преимущество соединения треугольником – работа на максимальной мощности. Но при включении электродвигателя в намотках продуцируются высокие пусковые токи, опасные для техники. При подключении звездой пуск мотора плавный, поскольку токи при нем низкие. Но достичь максимальной мощности при этом не получится.

В связи с вышесказанным двигатели при питании от 380 Вольт соединяют только звездой. Иначе высокий вольтаж при включении треугольником способен развить такие пусковые токи, что агрегат выйдет из строя. Но при высокой нагрузке выдаваемой мощности может не хватать. Тогда прибегают к хитрости: запускают двигатель звездой для безопасного включения, а затем переключаются с этой схемы на треугольник для набора высокой мощности.

Треугольник и звезда

Перед тем, как рассмотрим эти схемы, условимся:

При соединении обмоток электродвигателя звездой сначала соединяют все начала: НО1, НО2 и НО3. Тогда к КО4, КО5 и КО6 соответственно подают питание от A, B и C.

Соединения звездой и треугольником выглядят так:

Смотрите видео, которое поможет разобраться в способах соединения намоток.

Переходная схема

Для плавного включения электродвигателя 380 в 3х фазную электросеть и высокой отдачи мощности запускают его звездой. После разгона он автоматически переключается со схемы и начинает работать треугольником. Недостаток метода – невозможность смены направления вращения вала.

Переходная схема подразумевает подключение через магнитный пускатель (смотрите также видео). Таких понадобится 3:

Внимание! Пускатель 2 и 3 нельзя включать одновременно, потому что возникнет короткое замыкание. В связи с этим произойдет защитное отключение на аварийном щитке. Чтобы случайно пускатель 2 не включился одновременно с 3, необходима электрическая блокировка. Тогда третий магнитный пускатель включится только после того, как выключится второй. И наоборот.

Работу прекращают через размыкание МП1. При повторном запуске пункты 1-3 повторятся.

Подключение трехфазного двигателя к сети 220В

Подключение трехфазного двигателя к однофазной сети так же возможно, как и включение его в трехфазную сеть. Разница будет лишь в способе подключения и в выдаваемой мотором рабочей мощности. Она не сможет превышать 50% от максимального значения, достигаемого при питании от сети 380 Вольт, если соединить обмотки звездой. При подключении методом треугольника можно развить 70% от максимально возможной мощности. Поэтому, если питание подается от сети 220В, имеет смысл подключать электродвигатель только вторым способом.

Внимание! Если в электросети напряжение составляет 220 Вольт, то токи при запуске не достигают критических значений даже при соединении в треугольник. Поэтому данная схема является оптимальной.

Схема подсоединения мотора 380 на 220

При питании от 380 на каждую намотку приходится одна фаза. Но при подключении к 220 Вольт к двум обмоткам подключается фазный и нулевой провод, третья остается свободной. Для компенсации отсутствия третьей фазы запуск электродвигателя происходит через конденсатор.

Важно! Запустить мотор на 380 Вольт от напряжения 220В можно только с использованием конденсаторов. Без них могут работать только двигатели, рассчитанные на питание от 220 изначально.

Если запускается в ход маломощный мотор (не более 1500 Вт) без начальной нагрузки, то подключать можно лишь через рабочий конденсатор. От него идут два провода. Первый нужно соединить с нулем, а второй – с 3-ей вершиной треугольника.

Как подключить трехфазный двигатель к постоянному току. Смотреть фото Как подключить трехфазный двигатель к постоянному току. Смотреть картинку Как подключить трехфазный двигатель к постоянному току. Картинка про Как подключить трехфазный двигатель к постоянному току. Фото Как подключить трехфазный двигатель к постоянному току

Внимание! Если вам необходимо обратить направление вращения двигателя, подключенного к сети 220 Вольт, то первый вывод от конденсатора включите не через нуль, а через фазный провод.

При запуске мощного асинхронного двигателя (от 1500 Вт) или при пуске маломощного, но с начальной нагрузкой, подсоединяют его к 220В через рабочий и пусковой конденсаторы. Последний подключается параллельно первому. Он необходим для увеличения пускового момента, поэтому его включение происходит только в момент запуска мотора в ход.

Как подключить трехфазный двигатель к постоянному току. Смотреть фото Как подключить трехфазный двигатель к постоянному току. Смотреть картинку Как подключить трехфазный двигатель к постоянному току. Картинка про Как подключить трехфазный двигатель к постоянному току. Фото Как подключить трехфазный двигатель к постоянному току

Пусковой конденсатор включают в схему через кнопку, а подача питания в 220В происходит путем перевода специального тумблера в положение «включено», отключение – в состояние «выключено». Вместо тумблера можно воспользоваться кнопкой с двумя позициями. Тогда запуск будет следующим:

При включении электродвигателя в сеть 220 Вольт с реверсом для изменения направления вращения вала понадобится еще один тумблер. При смене положения один из выводов рабочего конденсатора будет соединяться то с фазой, то с нулем.

На рисунке выше предусмотрена схема подсоединения двигателя 380 к сети 220 с реверсом с пусковой кнопкой. Она актуальна, если мотор не набирает обороты с отсутствием пускового накопителя (он на рисунке находится справа).

Подбор конденсаторов

Емкость конденсаторов для подключения к 220В необходимо подбирать. В случае с рабочим накопителем это просто. Расчет его емкости происходит по формулам:

Внимание! Ср – емкость рабочего конденсатора, I – сила тока (смотреть в паспорте к устройству), а U – напряжение, при котором работает мотор. Так как питание однофазное, то U равно 220 Вольтам.

Подбор пускового накопителя происходит опытным путем (смотрите видео). Обычно его емкость (Сп) больше в 2-3 раза по сравнению с Ср. Например: есть мотор с током в обмотках 2 ампера. При подсоединении намоток треугольником в сеть 220 Ср будет равен 25 мкФ. Тогда Сп будет варьироваться в диапазоне 50-75 мкФ. Но таких накопителей не найти в магазинах. Поэтому придется купит несколько с номинальной емкостью и соединить их параллельно. 25 мкФ можно получить из 2 по 10 мкФ и 1 по 5.

Если Сп будет меньше требуемого значения, то намотки статора будут перегреваться. Возможно даже плавление изоляционной оболочки. Если Сп будет больше требуемого, то нельзя будет развить достаточную мощность. Поэтому подбор начинайте с минимальной емкости (в примере это 50 мкФ), а затем ищите оптимальное значение путем добавления накопителей номинальной емкости.

Внимание! Не давайте двигателю работать без нагрузки. Если он переделан с 380 на 220, то он при этом сгорит! Нельзя запитывать моторы от бытовой сети 220В, если они развивают мощность более 3000 Вт. Это чревато плавлением старой или некачественно сделанной проводки или вышибанием пробок.

Для запитывания двигателя от 220В подойдут накопители от 300В следующих типов:

Вы можете узнать все характеристики накопителя (емкость, тип, рабочее напряжение), взглянув на его корпус.

Теперь вы сможете пользоваться трехфазным асинхронным электродвигателем, включая его к сети 220В или 380В в зависимости от того, какая линия проходит рядом. Чтобы лучше понять принцип подсоединения обмоток и фаз с их началами и концами, посмотрите видео.

Источник

Подключение трехфазного двигателя к сети

За счет простой конструкции и легкости обслуживания асинхронные электрические двигатели находят широкое применение практически в любой сфере от промышленных предприятий до бытовой техники. Из-за особенности рабочего принципа они по-разному подключаются к трехфазным и однофазным электросетям.
Как подключить трехфазный двигатель к постоянному току. Смотреть фото Как подключить трехфазный двигатель к постоянному току. Смотреть картинку Как подключить трехфазный двигатель к постоянному току. Картинка про Как подключить трехфазный двигатель к постоянному току. Фото Как подключить трехфазный двигатель к постоянному току
Содержание:

Принцип работы

Асинхронный трехфазный электродвигатель представляет собой конструкцию из двух основных компонентов: статора – большого неподвижного элемента, служащего одновременно и корпусом двигателя, и ротора – подвижной детали, передающей механическую энергию на вал. Читайте более подробно о принципе работы асинхронного двигателя в отдельной статье. Очень рекомендуем сделать это, т.к. информация там может быть полезна в работе!

Коротко, статор представляет собой корпус, внутри которого находится сердечник или магнитопровод. Внешне он похож на беличье колесо и собирается из электротехнической стали, изолированный с помощью нанесения специального лака. Такая конструкция снижает количество вихревых токов, появляющихся при воздействии с круговым магнитным полем двигателя. В пазах сердечника располагаются три обмотки, на которые подается питание.

Как подключить трехфазный двигатель к постоянному току. Смотреть фото Как подключить трехфазный двигатель к постоянному току. Смотреть картинку Как подключить трехфазный двигатель к постоянному току. Картинка про Как подключить трехфазный двигатель к постоянному току. Фото Как подключить трехфазный двигатель к постоянному току

Ротор представляет собой шихтованный сердечник и вал. Стальные листы, используемые в роторном сердечнике, не обрабатываются лаком-изолятором. Обмотка ротора – короткозамкнутая.

Рассмотрим принцип действия этой конструкции. После подачи энергии на асинхронный двигатель с короткозамкнутым ротором на фиксированных обмотках статора создается магнитное поле. При подключении к сети с синусоидальным переменным током, характер поля будет изменяться с изменением показателей сети. Поскольку обмотки статора смещены относительно друг друга не только в пространстве, но и во времени, возникают три магнитных потока со смещением, в результате взаимодействия которых возникает вращающееся результирующее поле, проводящее ротор в движение.

Несмотря на то, что фактически ротор неподвижен, вращение магнитных полей на обмотках статора создает относительно вращение, что и приводит его в движение. Результирующее поле, «собранное» потоками обмоток, в процессе вращения наводит электродвижущую силу в проводники ротора. Согласно правилу Ленца, основное поле буквально пытается догнать поток на обмотках с целью сокращения относительной скорости.

Асинхронные двигателя относятся к электрическим машинам и, следовательно, могут использоваться не только в качестве моторов, но и как генераторы. Для этого необходимо, чтобы вращение ротора осуществлялось через некий внешний источник энергии, например, через другой двигатель или воздушную турбину. При наблюдении остаточного магнетизма на роторе, то в обмотках статора также будет генерироваться переменный поток, что приведет к получению напряжения на них за счет принципа индукции. Такие генераторы называют индукционными, они находят в бытовой и хозяйственной сфере для обеспечения бесперебойной работы непостоянных сетей переменного тока.

Подключение к однофазной сети через конденсатор

Подключение трехфазного двигателя к однофазной сети невозможно в чистом виде, без изменения схемы питания. Дело в том, что для создания вращающегося магнитного потока необходимо наличие как минимум двух обмоток со сдвигом по фазе, за счет которого и создает относительное движение статора. Если мотор подключить к бытовой однофазной сети напрямую, подав питание на одну из обмоток статора, он не будет работать. Это связано с тем, что одна работающая фаза создает пульсирующее поле, которое может обеспечивать движение вращающегося ротора, но не способно запустить его.


Для решения этой проблемы в двигателе размещается дополнительная обмотка под углом в 90˚ относительно основной, в цепь которой последовательно включен фазосмещающий элемент. В этом качестве могут выступать резисторы, индукционные катушки и другие устройства, однако лучшую эффективность показало применение конденсаторов.

Дополнительная обмотка, создаваемая с помощью конденсаторов, чаще всего выступает в роли пускателя двигателя, поэтому её называют пусковой. По достижении определенной температуры и скорости вращения вала срабатывает переключатель, размыкающий цепь. После этого работа двигателя обеспечивает взаимодействием между ротором и пульсирующим полем рабочей обмотки, как уже было описано выше.

Для обеспечения максимальной эффективности работы необходимо использование конденсаторов, чья ёмкость подходит под сетевые показатели. Кроме того, нередко в таких двигателях используется магнитный пускатель или реле тока для автоматического управления рабочим процессом. В видео ниже, будет и про магнитный пускатель.

Функциональные особенности подключения асинхронного двигателя с одним конденсатором отличаются хорошими пусковыми характеристиками, но сравнительно небольшой мощностью. Поскольку частота бытовой сети с напряжением 220 В составляет 50 Гц, такие моторы не могут вращаться со скоростью более 3000 об/мин. Это сокращает сферу их использования до бытовых приборов: пылесосов, холодильников, триммеров, блендеров и т.д.

Очень настоятельно рекомендуем посмотреть два видео ролика в этом разделе (одно сверху, другое снизу), т.к. наглядное пособие, может быть крайне полезным.

Подключение без конденсатора

Для подключения асинхронного двигателя в однофазную сеть без использования конденсаторов существуют две популярные схемы. Для обеспечения работы двигателя берутся синисторы с разнополярными импульсами управления и симметричный динистор.

Первая схема предназначена для электродвигателей с величиной номинального вращения от 1500 об/мин. В качестве фазосмещающего элемента выступает специальная цепочка. Схема соединения обмоток статора – треугольник.

Необходимо создать сдвинутое напряжение на конденсаторе путем изменения сопротивления. После того, как напряжение конденсатора достигнет нужного уровня, динистор переключится и включит заряженный конденсатор в схему запуска.

Вторая схема подходит для электродвигателей с большим пусковым сопротивлением или номинальной скоростью вращения от 3000 об/мин.

Очевидно, в данной ситуации необходимо создать сильный пусковой момент. Именно по этой причине в машинах этого типа для подключения статорных обмоток используется треугольник. Вместо фазосдвигающих конденсаторов в этой схеме применяются электронные ключи. Первый из них последовательно включается в цепь рабочей фазы, а второй – параллельно. В результате этой хитрости создается опережающий сдвиг тока. Однако данный способ эффективен только для двигателей 120˚ электрическим смещением.

Трехфазный электромотор можно подключить с помощью тиристорного ключа. Это, пожалуй, самый простой и эффективный способ подключения асинхронного двигателя в однофазную сеть без конденсаторов. Принцип его действия таков: ключ остается закрытым во время максимального сопротивления. Благодаря этому создается наибольший фазовый сдвиг и, соответственно, пусковой момент. По мере ускорения вала сопротивление снижается до оптимального уровня, сохраняющего сдвиг по фазе в пределах значения, обеспечивающего работу двигателя.

При наличии тиристорного ключа можно и вовсе отказаться от конденсаторов – он демонстрирует лучшие рабочие и пусковые характеристики даже для двигателей мощностью более 2 кВт.

Реверс электродвигателя в однофазной сети

При подключении асинхронного двигателя в сеть с однофазным током управлять реверсом (обратным вращением) ротора можно с помощью третьей обмотки. Для этого необходим тумблер или аналогичный двухпозиционный переключатель. Сначала с ним через конденсатор соединяется третья обмотка. Два контакта тумблера подключаются к двум другим обмоткам. Такая простая схема позволит управлять направлением вращения, переводя переключатель в нужное положение.

Подключение к трехфазной сети двигателя с короткозамкнутым ротором

Самыми эффективными и часто используемыми способами подключения асинхронного двигателя к трехфазной сети являются так называемые звезда и треугольник.

В конструкции двигателя с короткозамкнутым ротором есть всего шесть контактов обмоток – по три на каждой. Для того чтобы подключить асинхронный двигатель звездой необходимо соединить концы обмоток в одном месте, подобно лучам звезды. Примечательно, что в такой схеме напряжение у начал обмоток составляет 380 В, а на участке цепи, пролегающем между их соединением и местом подключения фаз – 220 В. Возможность включения двигателя данным методом указывается на его бирке символом Y.

Главное достоинство этой схемы в том, что она предотвращает возникновение перегрузок по току на электродвигателе при условии использования четырехполюсного автомата. Машина запускает плавно, без рывков. Недостаток схемы в том, что пониженное напряжение на каждой из обмоток не дает двигателю развивать максимальную мощность.

Как подключить трехфазный двигатель к постоянному току. Смотреть фото Как подключить трехфазный двигатель к постоянному току. Смотреть картинку Как подключить трехфазный двигатель к постоянному току. Картинка про Как подключить трехфазный двигатель к постоянному току. Фото Как подключить трехфазный двигатель к постоянному току

Если электродвигатель с короткозамкнутым ротором был подключен по схеме звезда, это можно заметить по общей перемычке на концах обмоток.

Как подключить трехфазный двигатель к постоянному току. Смотреть фото Как подключить трехфазный двигатель к постоянному току. Смотреть картинку Как подключить трехфазный двигатель к постоянному току. Картинка про Как подключить трехфазный двигатель к постоянному току. Фото Как подключить трехфазный двигатель к постоянному току

Для обеспечения предельной рабочей мощности трехфазного электродвигателя его подключают к сети треугольником. В этой схеме обмотки статора соединяются друг с другом по принципу конец-начало. При питании от трехфазной сети нет необходимости в соединении с рабочим нулем. Напряжение на участках цепи между выводами будет равняться 380 В. На табличке двигателя, подходящего для подключения треугольников, изображается символ ∆. Иногда производитель даже указывает номинальную мощность при использовании той или иной схемы.

Как подключить трехфазный двигатель к постоянному току. Смотреть фото Как подключить трехфазный двигатель к постоянному току. Смотреть картинку Как подключить трехфазный двигатель к постоянному току. Картинка про Как подключить трехфазный двигатель к постоянному току. Фото Как подключить трехфазный двигатель к постоянному току

Главный недостаток треугольника – пусковые токи слишком большой величины, которые иногда перегружают проводку и выводят её из строя. В качестве оптимального решения изредка создают комбинированную схему, в которой запуск и набор скорости происходит при «звезде», а затем обмотки переключают на «треугольник».

Подключение с фазным ротором

Асинхронные электродвигатели с фазным ротором имеют высокие пусковые и регулировочные характеристики, благодаря чему применяются в высокомощных машинах и приборах малой мощности. Конструктивно этот асинхронный двигатель отличается от обычного трехфазного тем, что на роторе есть своя трехфазная обмотка со сдвинутыми катушками.

Как подключить трехфазный двигатель к постоянному току. Смотреть фото Как подключить трехфазный двигатель к постоянному току. Смотреть картинку Как подключить трехфазный двигатель к постоянному току. Картинка про Как подключить трехфазный двигатель к постоянному току. Фото Как подключить трехфазный двигатель к постоянному току

Для подключения электродвигателей с фазным ротором применяются описанные выше схемы звезда и треугольник (для 380 В и 220 В сетей соответственно). Стоит заметить, что для того или иного двигателя может быть использована только одна схема, указанная в паспорте. Пренебрежение этим требованием может привести к сгоранию мотора.

Соединение обмоток в клеммной коробке производится так же, как на схемах из предыдущего способа. Изменение рабочих характеристик так же закономерно: треугольник выдает практически в полтора раза большую мощность, а звезда, в свою очередь, мягче функционирует и управляется.

В отличие от моделей с короткозамкнутым ротором, асинхронный двигатель с трехфазным ротором имеет более сложную конструкцию, но это позволяет получать улучшенные пусковые характеристики и обеспечивать плавную регулировку вращения. Используются такие машины в оборудовании, требуемом регулировки частоты вращения и запускаемом под нагрузкой, к примеру, в крановых механизмах.

Источник

Схемы подключения трехфазного электродвигателя

Как подключить трехфазный двигатель к постоянному току. Смотреть фото Как подключить трехфазный двигатель к постоянному току. Смотреть картинку Как подключить трехфазный двигатель к постоянному току. Картинка про Как подключить трехфазный двигатель к постоянному току. Фото Как подключить трехфазный двигатель к постоянному току

1. Подключение трехфазного электродвигателя – общая схема

Когда электрик устраивается работать на любое промышленное предприятие, он должен понимать, что ему придётся иметь дело с большим количеством трехфазных электродвигателей. И любой уважающий себя электрик (я не говорю о тех, кто делает проводку в квартире) должен чётко знать схему подключения трёхфазного двигателя.

Сразу приношу извинения, что в данной статье я часто контактор называю пускателем, хотя подробно объяснял уже, что пускатель и контактор – это разные вещи. Что поделать, приелось это название.

В статье пойдёт речь о схемах подключения наиболее распространенного асинхронного электродвигателя через магнитный пускатель. Но не только. Расскажу также от способах и принципах защиты двигателя от перегрева и перегрузки.

Подключение трехфазного двигателя

Имеется ввиду асинхронный электродвигатель, соединение обмоток – звезда или треугольник, подключение к сети 380В.

Для работы двигателя рабочий нулевой проводник N (Neutral) не нужен, а вот защитный (PE, Protect Earth) в целях безопасности должен быть подключен обязательно.

По принципам построения сетей 380В я уже подробно писал в статьях про трехфазный счетчик и реле напряжения.

В самом общем случае схема будет выглядеть таким образом, как показано в начале статьи. Действительно, почему бы двигатель не включить как обычную лампочку, только выключатель будет “трехклавишный”?

Как подключить трехфазный двигатель к постоянному току. Смотреть фото Как подключить трехфазный двигатель к постоянному току. Смотреть картинку Как подключить трехфазный двигатель к постоянному току. Картинка про Как подключить трехфазный двигатель к постоянному току. Фото Как подключить трехфазный двигатель к постоянному току

2. Подключение двигателя через рубильник или выключатель

Но даже лампочку никто не включает просто так, сеть освещения и вообще любая нагрузка всегда включается только через защитные автоматы.

Подробнее про замену и установку автоматических выключателей – здесь. А про их параметры и выбор – здесь.

Схема подключения трехфазного двигателя в сеть через автоматический выключатель

Поэтому более подробно общий случай будет выглядеть так:

Как подключить трехфазный двигатель к постоянному току. Смотреть фото Как подключить трехфазный двигатель к постоянному току. Смотреть картинку Как подключить трехфазный двигатель к постоянному току. Картинка про Как подключить трехфазный двигатель к постоянному току. Фото Как подключить трехфазный двигатель к постоянному току

3. Подключение двигателя через автоматический выключатель. ПРАКТИЧЕСКАЯ СХЕМА

На схеме 3 показан защитный автомат, который защищает двигатель от перегрузки по току (“прямоугольный” изгиб питающих линий) и от короткого замыкания (“круглые” изгибы). Под защитным автоматом я подразумеваю обычный трехполюсный автомат с тепловой характеристикой нагрузки С или D.

Напомню, чтобы ориентировочно выбрать (оценить) необходимый тепловой ток уставки тепловой защиты, надо номинальную мощность трехфазного двигателя (указана на шильдике) умножить на 2.

Как подключить трехфазный двигатель к постоянному току. Смотреть фото Как подключить трехфазный двигатель к постоянному току. Смотреть картинку Как подключить трехфазный двигатель к постоянному току. Картинка про Как подключить трехфазный двигатель к постоянному току. Фото Как подключить трехфазный двигатель к постоянному току

Защитный автомат для включения электродвигателя. Ток 10А, через такой можно включать двигатель мощностью 4 кВт. Не больше и не меньше.

Схема 3 имеет право на жизнь (по бедности или незнанию местных электриков).

Она прекрасно работает, так же, как по многу лет может работать скрутка меди с алюминием. И в один “прекрасный” день сгорит скрутка. Или сгорит двигатель.

Если уж использовать такую схему, надо тщательно подобрать ток автомата, чтобы он был на 10-20% больше рабочего тока двигателя. И характеристику теплового расцепителя выбирать D, чтобы при тяжелом пуске автомат не срабатывал.

Например, движок 1,5 кВт. Прикидываем максимальный рабочий ток – 3А (реальный рабочий может быть меньше, надо измерять). Значит, трехполюсный автомат надо ставить на 3 или 4А, в зависимости от пускового тока.

Плюс этой схемы подключения двигателя – цена и простота исполнения и обслуживания. Например, там, где один двигатель, и его включают вручную на всю смену. Минусы такой схемы с включением через автомат –

Эти недостатки можно устранить, в схемах ниже будет показано как.

Подключение трехфазного двигателя через ручной пускатель

СамЭлектрик.ру в социальных сетях

Подписывайтесь! Там тоже интересно!

Как подключить трехфазный двигатель к постоянному току. Смотреть фото Как подключить трехфазный двигатель к постоянному току. Смотреть картинку Как подключить трехфазный двигатель к постоянному току. Картинка про Как подключить трехфазный двигатель к постоянному току. Фото Как подключить трехфазный двигатель к постоянному току

4. Подключение двигателя через ручной пускатель. ПРАКТИЧЕСКАЯ СХЕМА

Поскольку у двигателей обычно большой пусковой ток, то у автоматов защиты двигателей (мотор-автоматов), как правило, характеристика тепловой защиты типа D. Т.е. он выдерживает кратковременные (пусковые) перегрузки примерно в 10 раз больше от номинала.

Как подключить трехфазный двигатель к постоянному току. Смотреть фото Как подключить трехфазный двигатель к постоянному току. Смотреть картинку Как подключить трехфазный двигатель к постоянному току. Картинка про Как подключить трехфазный двигатель к постоянному току. Фото Как подключить трехфазный двигатель к постоянному току

Ручной пускатель двигателя с дополнительным контрольным контактом.

Вот что у него на боковой стенке:

Как подключить трехфазный двигатель к постоянному току. Смотреть фото Как подключить трехфазный двигатель к постоянному току. Смотреть картинку Как подключить трехфазный двигатель к постоянному току. Картинка про Как подключить трехфазный двигатель к постоянному току. Фото Как подключить трехфазный двигатель к постоянному току

Автомат защиты двигателя – характеристики на боковой стенке

Ток уставки (тепловой) – от 17 до 23 А, устанавливается вручную. Ток отсечки (срабатывание при КЗ) – 297 А.

В принципе, ручной пускатель и мотор-автомат – это одно и то же устройство. Но пускателем, показанным на фото, можно коммутировать питание двигателя. А мотор-автомат постоянно подает питание (три фазы) на контактор, который, в свою очередь, коммутирует питание двигателя. Короче, разница – в схеме подключения.

Плюс схемы – можно регулировать уставку теплового тока. Минус тот же, что и в предыдущей схеме – нет дистанционного включения.

Схема подключения двигателя через магнитный пускатель

Этой схеме подключения трехфазного двигателя надо уделить самое пристальное внимание. Она наиболее распространена во всем промышленном оборудовании, выпускавшемся примерно до 2000-х годов. А в новых китайских простеньких станках используется и по сей день.

Электрик, который её не знает – как хирург, не умеющий отличить артерию от вены; как юрист, не знающий 1-ю статью Конституции РФ; так танцор, не отличающий вальс от тектоника.

Пример такой схемы – в статье про восстановление схемы гидравлического пресса, см. последнюю в статье схему, пускатель КМ0. Про выбор, устройство и характеристики электромагнитных пускателей (контакторов) – прочитайте здесь.

Как подключить трехфазный двигатель к постоянному току. Смотреть фото Как подключить трехфазный двигатель к постоянному току. Смотреть картинку Как подключить трехфазный двигатель к постоянному току. Картинка про Как подключить трехфазный двигатель к постоянному току. Фото Как подключить трехфазный двигатель к постоянному току

5. Схема подключения двигателя через пускатель с кнопками пуск стоп

Здесь питание цепи управления поступает с фазы L1 (провод 1) через нормально замкнутую (НЗ) кнопку “Стоп” (провод 2).

Если теперь нажать на кнопку “Пуск”, то цепь питания катушки электромагнитного пускателя КМ замкнется (провод 3), его контакты замкнутся, и три фазы поступят на двигатель. Но в таких схемах кроме трёх “силовых” контактов у пускателя есть ещё один дополнительный контакт. Его называют “блокировочным” или “контактом самоподхвата”.

Когда электромагнитный пускатель включается нажатием кнопки SB1 “Пуск”, замыкается и контакт самоподхвата. А если он замкнулся, то даже если кнопка “Пуск” будет отжата, цепь питания катушки пускателя всё равно останется замкнутой. И двигатель продолжит работать, пока не будет нажата кнопка “Стоп”.

Поскольку тема с магнитными пускателями очень обширная, она вынесена в отдельную статью Схемы подключения магнитного пускателя. Статья существенно расширена и дополнена. Там рассмотрено всё – подключение различных нагрузок, защита (тепловая и от кз), реверсивные схемы, управление от разных точек, и т.д. Нумерация схем сохранена. Рекомендую.

Подключение трехфазного двигателя через электронные устройства

Все способы пуска двигателя, описанные выше, называются Пуск прямой подачей напряжения. Часто, в мощных приводах, такой пуск является тяжелым испытанием для оборудования – горят ремни, ломаются подшипники и крепления, и т.д.

Поэтому, статья была бы неполной, если бы я не упомянул современные тенденции. Теперь всё чаще для подключения трехфазного двигателя вместо электромагнитных пускателей применяют электронные силовые устройства. Под этим я подразумеваю:

Преимущества таких устройств очевидны (прежде всего – отсутствие контактов как таковых), недостаток пока один – цена. А вот как может выглядеть схема их включения:

Как подключить трехфазный двигатель к постоянному току. Смотреть фото Как подключить трехфазный двигатель к постоянному току. Смотреть картинку Как подключить трехфазный двигатель к постоянному току. Картинка про Как подключить трехфазный двигатель к постоянному току. Фото Как подключить трехфазный двигатель к постоянному току

10. Подключение трехфазного двигателя – общая схема с электронной силой

Двухскоростные электродвигатели

Старый специфический способ подключения двухскоростных двигателей описан в статье Подключение двухскоростных асинхронных двигателей.

На этом заканчиваю, спасибо за внимание, всего охватить не удалось, пишите вопросы в комментариях!

Скачать

Если тема интересует более глубоко, рекомендую ознакомиться с литературой, приведенной на странице Скачать.

• Пуск и защита двигателей переменного тока / Пуск и защита двигателей переменного тока. Системы пуска и торможения двигателей переменного тока. Устройства защиты и анализ неисправностей двигателей переменного тока. Руководство по выбору устройств защиты. Руководство от Schneider Electric, pdf, 1.17 MB, скачан: 1045 раз./

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *