Структурное программирование язык программирования
информатика
Лекции
1. Введение
ИНФОРМАЦИЯ И ЕЕ РОЛЬ В СОВРЕМЕННОМ ОБЩЕСТВЕ.
ИНФОРМАТИКА- НАУКА, ИЗУЧАЮЩАЯ СПОСОБЫ АВТОМАТИЗИРОВАННОГО СОЗДАНИЯ, ХРАНЕНИЯ, ОБРАБОТКИ, ИСПОЛЬЗОВАНИЯ, ПЕРЕДАЧИ И ЗАЩИТЫ ИНФОРМАЦИИ.
ИНФОРМАЦИЯ – ЭТО НАБОР СИМВОЛОВ, ГРАФИЧЕСКИХ ОБРАЗОВ ИЛИ ЗВУКОВЫХ СИГНАЛОВ, НЕСУЩИХ ОПРЕДЕЛЕННУЮ СМЫСЛОВУЮ НАГРУЗКУ.
В развитых странах большинство работающих заняты не в сфере производства, а в той или иной степени занимаются обработкой информации. Поэтому философы называют нашу эпоху постиндустриальной. В 1983 году американский сенатор Г.Харт охарактеризовал этот процесс так: «Мы переходим от экономики, основанной на тяжелой промышленности, к экономике, которая все больше ориентируется на информацию, новейшую технику и технологию, средства связи и услуги..»
2. КРАТКАЯ ИСТОРИЯ РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ.
Вся история развития человеческого общества связана с накоплением и обменом информацией (наскальная живопись, письменность, библиотеки, почта, телефон, радио, счеты и механические арифмометры и др.). Коренной перелом в области технологии обработки информации начался после второй мировой войны.
В вычислительных машинах первого поколения основными элементами были электронные лампы. Эти машины занимали громадные залы, весили сотни тонн и расходовали сотни киловатт электроэнергии. Их быстродействие и надежность были низкими, а стоимость достигала 500-700 тысяч долларов.
Появление более мощных и дешевых ЭВМ второго поколения стало возможным благодаря изобретению в 1948 году полупроводниковых устройств- транзисторов. Главный недостаток машин первого и второго поколений заключался в том, что они собирались из большого числа компонент, соединяемых между собой. Точки соединения (пайки) являются самыми ненадежными местами в электронной технике, поэтому эти ЭВМ часто выходили из строя.
В ЭВМ третьего поколения (с середины 60-х годов ХХ века) стали использоваться интегральные микросхемы (чипы)- устройства, содержащие в себе тысячи транзисторов и других элементов, но изготовляемые как единое целое, без сварных или паяных соединений этих элементов между собой. Это привело не только к резкому увеличению надежности ЭВМ, но и к снижению размеров, энергопотребления и стоимости (до 50 тысяч долларов).
История ЭВМ четвертого поколения началась в 1970 году, когда ранее никому не известная американская фирма INTEL создала большую интегральную схему (БИС), содержащую в себе практически всю основную электронику компьютера. Цена одной такой схемы (микропроцессора) составляла всего несколько десятков долларов, что в итоге и привело к снижению цен на ЭВМ до уровня доступных широкому кругу пользователей.
СОВРЕМЕННЫЕ КОМПЬТЕРЫ- ЭТО ЭВМ ЧЕТВЕРТОГО ПОКОЛЕНИЯ, В КОТОРЫХ ИСПОЛЬЗУЮТСЯ БОЛЬШИЕ ИНТЕГРАЛЬНЫЕ СХЕМЫ.
6.ПРЕДСТАВЛЕНИЕ ИНФОРМАЦИИ В КОМПЬЮТЕРЕ И ЕЕ ОБЪЕМ.
ЛЮБОЕ СООБЩЕНИЕ НА ЛЮБОМ ЯЗЫКЕ СОСТОИТ ИЗ ПОСЛЕДОВАТЕЛЬНОСТИ СИМВОЛОВ- БУКВ, ЦИФР, ЗНАКОВ. Действительно, в каждом языке есть свой алфавит из определенного набора букв (например, в русском- 33 буквы, английском- 26, и т.д.). Из этих букв образуются слова, которые в свою очередь, вместе с цифрами и знаками препинания образуют предложения, в результате чего и создается текстовое сообщение. Не является исключением и язык на котором «говорит» компьютер, только набор букв в этом языке является минимально возможным.
В КОМПЬЮТЕРЕ ИСПОЛЬЗУЮТСЯ 2 СИМВОЛА- НОЛЬ И ЕДИНИЦА (0 и 1), АНАЛОГИЧНО ТОМУ, КАК В АЗБУКЕ МОРЗЕ ИСПОЛЬЗУЮТСЯ ТОЧКА И ТИРЕ. Действительно, закодировав привычные человеку символы (буквы, цифры, знаки) в виде нулей и единиц (или точек и тире), можно составить, передать и сохранить любое сообщение.
ЭТО СВЯЗАНО С ТЕМ, ЧТО ИНФОРМАЦИЮ, ПРЕДСТАВЛЕННУЮ В ТАКОМ ВИДЕ, ЛЕГКО ТЕХНИЧЕСКИ СМОДЕЛИРОВАТЬ, НАПРИМЕР, В ВИДЕ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ. Если в какой-то момент времени по проводнику идет ток, то по нему передается единица, если тока нет- ноль. Аналогично, если направление магнитного поля на каком-то участке поверхности магнитного диска одно- на этом участке записан ноль, другое- единица. Если определенный участок поверхности оптического диска отражает лазерный луч- на нем записан ноль, не отражает- единица.
ОБЪЕМ ИНФОРМАЦИИ, НЕОБХОДИМЫЙ ДЛЯ ЗАПОМИНАНИЯ ОДНОГО ИЗ ДВУХ СИМВОЛОВ-0 ИЛИ 1, НАЗЫВАЕТСЯ 1 БИТ (англ. binary digit- двоичная единица). 1 бит- минимально возможный объем информации. Он соответствует промежутку времени, в течение которого по проводнику передается или не передается электрический сигнал, участку поверхности магнитного диска, частицы которого намагничены в том или другом направлении, участку поверхности оптического диска, который отражает или не отражает лазерный луч, одному триггеру, находящемуся в одном из двух возможных состояний.
Итак, если у нас есть один бит, то с его помощью мы можем закодировать один из двух символов- либо 0, либо 1.
3 бита- 8 вариантов;
Продолжая дальше, получим:
4 бита- 16 вариантов,
7 бит- 128 вариантов,
8 бит- 256 вариантов,
9 бит- 512 вариантов,
10 бит- 1024 варианта,
В обычной жизни нам достаточно 150-160 стандартных символов (больших и маленьких русских и латинских букв, цифр, знаков препинания, арифметических действий и т.п.). Если каждому из них будет соответствовать свой код из нулей и единиц, то 7 бит для этого будет недостаточно (7 бит позволят закодировать только 128 различных символов), поэтому используют 8 бит.
ДЛЯ КОДИРОВАНИЯ ОДНОГО ПРИВЫЧНОГО ЧЕЛОВЕКУ СИМВОЛА В КОМПЬЮТЕРЕ ИСПОЛЬЗУЕТСЯ 8 БИТ, ЧТО ПОЗВОЛЯЕТ ЗАКОДИРОВАТЬ 256 РАЗЛИЧНЫХ СИМВОЛОВ.
СТАНДАРТНЫЙ НАБОР ИЗ 256 СИМВОЛОВ НАЗЫВАЕТСЯ ASCII ( произносится «аски», означает «Американский Стандартный Код для Обмена Информацией»- англ. American Standart Code for Information Interchange).
ОН ВКЛЮЧАЕТ В СЕБЯ БОЛЬШИЕ И МАЛЕНЬКИЕ РУССКИЕ И ЛАТИНСКИЕ БУКВЫ, ЦИФРЫ, ЗНАКИ ПРЕПИНАНИЯ И АРИФМЕТИЧЕСКИХ ДЕЙСТВИЙ И Т.П.
КАЖДОМУ СИМВОЛУ ASCII СООТВЕТСТВУЕТ 8-БИТОВЫЙ ДВОИЧНЫЙ КОД, НАПРИМЕР:
ОБЪЕМ ИНФОРМАЦИИ, НЕОБХОДИМЫЙ ДЛЯ ЗАПОМИНАНИЯ ОДНОГО СИМВОЛА ASCII НАЗЫВАЕТСЯ 1 БАЙТ.
Очевидно что, поскольку под один стандартный ASCII-символ отводится 8 бит,
Остальные единицы объема информации являются производными от байта:
1 КИЛОБАЙТ = 1024 БАЙТА И СООТВЕТСТВУЕТ ПРИМЕРНО ПОЛОВИНЕ СТРАНИЦЫ ТЕКСТА,
1 МЕГАБАЙТ = 1024 КИЛОБАЙТАМ И СООТВЕТСТВУЕТ ПРИМЕРНО 500 СТРАНИЦАМ ТЕКСТА,
1 ГИГАБАЙТ = 1024 МЕГАБАЙТАМ И СООТВЕТСТВУЕТ ПРИМЕРНО 2 КОМПЛЕКТАМ ЭНЦИКЛОПЕДИИ,
1 ТЕРАБАЙТ = 1024 ГИГАБАЙТАМ И СООТВЕТСТВУЕТ ПРИМЕРНО 2000 КОМПЛЕКТАМ ЭНЦИКЛОПЕДИИ.
СКОРОСТЬ ПЕРЕДАЧИ ИНФОРМАЦИИ ПО ЛИНИЯМ СВЯЗИ ИЗМЕРЯЕТСЯ В БОДАХ.
В частности, если говорят, что пропускная способность какого-то устройства составляет 28 Килобод, то это значит, что с его помощью можно передать по линии связи около 28 тысяч нулей и единиц за одну секунду.
7. СЖАТИЕ ИНФОРМАЦИИ НА ДИСКЕ
ИНФОРМАЦИЮ НА ДИСКЕ МОЖНО ОБРАБОТАТЬ С ПОМОЩЬЮ СПЕЦИАЛЬНЫХ ПРОГРАММ ТАКИМ ОБРАЗОМ, ЧТОБЫ ОНА ЗАНИМАЛА МЕНЬШИЙ ОБЪЕМ.
Сжатие информации используют, если объем носителя информации недостаточен для хранения требуемого объема информации или информацию надо послать по электронной почте
Программы, используемые при сжатии отдельных файлов называются архиваторами. Эти программы часто позволяют достичь степени сжатия информации в несколько раз.
Структурное программирование
Структу́рное программи́рование — парадигма программирования, в основе которой лежит представление программы в виде иерархической структуры блоков. Концептуализирована в конце 1960-х — начале 1970-х годов на фундаменте теоремы Бёма — Якопини, математически обосновывающей возможность структурной организации программ, и работы Эдсгера Дейкстры «О вреде оператора goto» (англ. Goto considered harmful ).
В соответствии с парадигмой, любая программа строится без использования оператора goto из трёх базовых управляющих структур: последовательность, ветвление, цикл; кроме того, используются подпрограммы. При этом разработка программы ведётся пошагово, методом «сверху вниз».
Методология структурного программирования появилась как следствие возрастания сложности решаемых на компьютерах задач, и соответственно, усложнения программного обеспечения. В 1970-е годы объёмы и сложность программ достигли такого уровня, что традиционная (неструктурированная) разработка программ перестала удовлетворять потребностям практики. Программы становились слишком сложными, чтобы их можно было нормально сопровождать. Поэтому потребовалась систематизация процесса разработки и структуры программ.
Методология структурной разработки программного обеспечения была признана «самой сильной формализацией 70-х годов».
Содержание
История
Ситуация коренным образом изменилась через десять лет, когда в марте 1968 года Дейкстра опубликовал своё знаменитое письмо «Оператор Go To считается вредным» (Go To Statement Considered Harmful). Это поистине исторический документ, оказавший заметное влияние на дальнейшее развитие программирования.
Судьба самого документа очень интересна. Дело в том, что Дейкстра дал статье совсем другое название: «Доводы против оператора GO TO» (A Case against the GO TO Statement).
Однако в момент публикации произошло нечто непонятное — статья почему-то загадочным образом превратилась в «Письмо к редактору», причем прежнее название столь же загадочно исчезло. Что произошло на самом деле? Дейкстра объяснил таинственное превращение статьи в письмо лишь много лет спустя, в 2001 году, за год до смерти.
Журнал Communications of the ACM опубликовал мой текст под названием «Оператор GOTO считается вредным». В последующие годы его часто цитировали. К сожалению, зачастую это делали люди, которые видели в нём не больше, чем сказано в заголовке. Этот заголовок стал краеугольным камнем моей славы…
Цель структурного программирования — повысить производительность труда программистов, в том числе при разработке больших и сложных программных комплексов, сократить число ошибок, упростить отладку, модификацию и сопровождение программного обеспечения.
Спагетти-код
Структурное программирование призвано, в частности, устранить беспорядок и ошибки в программах, вызванные трудностями чтения кода, несистематизированным, неудобным для восприятия и анализа исходным текстом программы. Такой текст нередко характеризуют как «спагетти-код».
Спагетти-код назван так потому, что ход выполнения программы похож на миску спагетти, то есть извилистый и запутанный. Иногда называется «кенгуру-код» (kangaroo code) из-за множества инструкций jump.
Оператор goto
Начиная с 1970-х годов оператор безусловного перехода goto оказался в центре систематической и всевозрастающей критики. Неправильное и необдуманное использование оператора goto в исходном тексте программы приводит к получению запутанного, неудобочитаемого «спагетти-кода». По тексту такого кода практически невозможно понять порядок исполнения и взаимозависимость фрагментов.
Некоторые способы применения goto могут создавать проблемы с логикой исполнения программы:
Однако в языках высокого уровня, где этот оператор сохранился, на его использование, как правило, накладываются жёсткие ограничения, препятствующие использованию наиболее опасных методов его применения: например, запрещается передавать управление извне цикла, процедуры или функции внутрь. Стандарт языка C++ запрещает обход инициализации переменной с помощью goto.
Теорема о структурном программировании
Теорема Бёма-Якопини написана сложным языком и в непривычных обозначениях. Если использовать современную терминологию и обозначения, она примет вид:
Любая программа, заданная в виде блок-схемы, может быть представлена с помощью трёх управляющих структур:
где f, g — блок-схемы с одним входом и одним выходом,
Пояснение. Формула f THEN g означает следующее: сначала выполняется программа f, затем выполняется программа g.
Принципы структурного программирования
Принцип 1. Следует отказаться от использования оператора безусловного перехода goto.
Принцип 2. Любая программа строится из трёх базовых управляющих конструкций: последовательность, ветвление, цикл.
Принцип 3. В программе базовые управляющие конструкции могут быть вложены друг в друга произвольным образом. Никаких других средств управления последовательностью выполнения операций не предусматривается.
Принцип 4. Повторяющиеся фрагменты программы можно оформить в виде подпрограмм (процедур и функций). Таким же образом (в виде подпрограмм) можно оформить логически целостные фрагменты программы, даже если они не повторяются.
Принцип 5. Каждую логически законченную группу инструкций следует оформить как блок. Блоки являются основой структурного программирования.
Блок — это логически сгруппированная часть исходного кода, например, набор инструкций, записанных подряд в исходном коде программы. Понятие блок означает, что к блоку инструкций следует обращаться как к единой инструкции. Блоки служат для ограничения области видимости переменных и функций. Блоки могут быть пустыми или вложенными один в другой. Границы блока строго определены. Например, в if-инструкции блок ограничен кодом BEGIN..END (в языке Паскаль) или фигурными скобками <…>(в языке C) или отступами (в языке Питон).
Принцип 6. Все перечисленные конструкции должны иметь один вход и один выход.
Метод «сверху вниз»
Сначала пишется текст основной программы, в котором, вместо каждого связного логического фрагмента текста, вставляется вызов подпрограммы, которая будет выполнять этот фрагмент. Вместо настоящих, работающих подпрограмм, в программу вставляются фиктивные части — заглушки, которые, говоря упрощенно, ничего не делают.
После того, как программист убедится, что подпрограммы вызываются в правильной последовательности (то есть общая структура программы верна), подпрограммы-заглушки последовательно заменяются на реально работающие, причём разработка каждой подпрограммы ведётся тем же методом, что и основной программы. Разработка заканчивается тогда, когда не останется ни одной заглушки.
Такая последовательность гарантирует, что на каждом этапе разработки программист одновременно имеет дело с обозримым и понятным ему множеством фрагментов, и может быть уверен, что общая структура всех более высоких уровней программы верна.
Подпрограмма
Подпрограмма является важным элементом структурного программирования. Изначально подпрограммы появились как средство оптимизации программ по объёму занимаемой памяти — они позволили не повторять в программе идентичные блоки кода, а описывать их однократно и вызывать по мере необходимости. К настоящему времени данная функция подпрограмм стала вспомогательной, главное их назначение — структуризация программы с целью удобства её понимания и сопровождения.
Выделение набора действий в подпрограмму и вызов её по мере необходимости позволяет логически выделить целостную подзадачу, имеющую типовое решение. Такое действие имеет ещё одно (помимо экономии памяти) преимущество перед повторением однотипных действий. Любое изменение (исправление ошибки, оптимизация, расширение функциональности), сделанное в подпрограмме, автоматически отражается на всех её вызовах, в то время как при дублировании каждое изменение необходимо вносить в каждое вхождение изменяемого кода.
Даже в тех случаях, когда в подпрограмму выделяется однократно производимый набор действий, это оправдано, так как позволяет сократить размеры целостных блоков кода, составляющих программу, то есть сделать программу более понятной и обозримой.
Достоинства структурного программирования
Следование принципам структурного программирования сделало тексты программ, даже довольно крупных, нормально читаемыми. Серьёзно облегчилось понимание программ, появилась возможность разработки программ в нормальном промышленном режиме, когда программу может без особых затруднений понять не только её автор, но и другие программисты. Это позволило разрабатывать достаточно крупные для того времени программные комплексы силами коллективов разработчиков, и сопровождать эти комплексы в течение многих лет, даже в условиях неизбежных изменений в составе персонала.
Ясность и удобочитаемость программ
Поведение многих неструктурных программ часто ближе к броуновскому движению, чем к сколько-нибудь организованному процессу. Всякая попытка прочесть листинг приводит человека в отчаяние тем, что в такой программе обычно исполняются несколько операторов, после чего управление передается в точку несколькими страницами ниже. Там исполняются ещё несколько операторов и управление снова передается в какую-то случайную точку. Тут исполняются ещё какие-то операторы и т. д. После нескольких таких передач читатель забывает, с чего все началось. И теряет ход мысли.
Двумерное структурное программирование
«Забытые» парадигмы программирования
Получилось так, что те парадигмы, которые раньше потом и кровью пробивались в свет через орды приверженцев традиционных методов постепенно забываются. Эти парадигмы возникли на заре программирования и то, почему они возникали, какие преимущества они давали и почему используются до сих пор полезно знать любому разработчику.
Ладно. Введение это очень весело, но вы его все равно не читаете, так что кому интересно — добро пожаловать под кат!
Императивное программирование
Исторически сложилось так, что подавляющее большинство вычислительной техники, которую мы программируем имеет состояние и программируется инструкциями, поэтому первые языки программирования в основном были чисто императивными, т.е. не поддерживали никаких парадигм кроме императивной.
Это были машинные коды, языки ассемблера и ранние высокоуровневые языки, вроде Fortran.
Ключевые моменты:
В этой парадигме вычисления описываются в виде инструкций, шаг за шагом изменяющих состояние программы.
В низкоуровневых языках (таких как язык ассемблера) состоянием могут быть память, регистры и флаги, а инструкциями — те команды, что поддерживает целевой процессор.
В более высокоуровневых (таких как Си) состояние — это только память, инструкции могут быть сложнее и вызывать выделение и освобождение памяти в процессе своей работы.
В совсем высокоуровневых (таких как Python, если на нем программировать императивно) состояние ограничивается лишь переменными, а команды могут представлять собой комплексные операции, которые на ассемблере занимали бы сотни строк.
Основные понятия:
Порожденные понятия:
— Присваивание
— Переход
— Память
— Указатель
Языки поддерживающие данную парадигму:
Как основную:
— Языки ассемблера
— Fortran
— Algol
— Cobol
— Pascal
— C
— C++
— Ada
Как вспомогательную:
— Python
— Ruby
— Java
— C#
— PHP
— Haskell (через монады)
Стоит заметить, что большая часть современных языков в той или иной степени поддерживает императивное программирование. Даже на чистом функциональном языке Haskell можно писать императивно.
Структурное программирование
Структурное программирование — парадигма программирования (также часто встречающееся определение — методология разработки), которая была первым большим шагом в развитии программирования.
Основоположниками структурного программирования были такие знаменитые люди как Э. Дейкстра и Н. Вирт.
Языками-первопроходцами в этой парадигме были Fortran, Algol и B, позже их приемниками стали Pascal и C.
Ключевые моменты:
Эта парадигма вводит новые понятия, объединяющие часто используемые шаблоны написания императивного кода.
В структурном программировании мы по прежнему оперируем состоянием и инструкциями, однако вводится понятие составной инструкции (блока), инструкций ветвления и цикла.
Благодаря этим простым изменениям возможно отказаться от оператора goto в большинстве случаев, что упрощает код.
Иногда goto все-же делает код читабельнее, благодаря чему он до сих пор широко используется, несмотря на все заявления его противников.
Основные понятия:
— Блок
— Цикл
— Ветвление
Языки поддерживающие данную парадигму:
Как основную:
Как вспомогательную:
— C#
— Java
— Python
— Ruby
— JavaScript
Поддерживают частично:
— Некоторые макроассемблеры (через макросы)
Опять-же большая часть современных языков поддерживают структурную парадигму.
Процедурное программирование
Опять-же возрастающая сложность программного обеспечения заставила программистов искать другие способы описывать вычисления.
Собственно еще раз были введены дополнительные понятия, которые позволили по-новому взглянуть на программирование.
Этим понятием на этот раз была процедура.
В результате возникла новая методология написания программ, которая приветствуется и по сей день — исходная задача разбивается на меньшие (с помощью процедур) и это происходит до тех пор, пока решение всех конкретных процедур не окажется тривиальным.
Ключевые моменты:
Процедура — самостоятельный участок кода, который можно выполнить как одну инструкцию.
В современном программировании процедура может иметь несколько точек выхода (return в C-подобных языках), несколько точек входа (с помощью yield в Python или статических локальных переменных в C++), иметь аргументы, возвращать значение как результат своего выполнения, быть перегруженной по количеству или типу параметров и много чего еще.
Основные понятия:
Порожденные понятия:
— Вызов
— Аргументы
— Возврат
— Рекурсия
— Перегрузка
Языки поддерживающие данную парадигму:
Как основную:
— C
— C++
— Pascal
— Object Pascal
Как вспомогательную:
— C#
— Java
— Ruby
— Python
— JavaScript
Поддерживают частично:
— Ранний Basic
Стоит отметить, что несколько точек входа из всех этих языков поддерживаются только в Python.
Модульное программирование
Который раз увеличивающаяся сложность программ заставила разработчиков разделять свой код. На этот раз процедур было недостаточно и в этот раз было введено новое понятие — модуль.
Забегая вперед скажу, что модули тоже оказались неспособны сдержать с невероятной скоростью растущую сложность ПО и в последствии появились пакеты (это тоже модульное программирование), классы (это уже ООП), шаблоны (обобщенное программирование).
Программа описанная в стиле модульного программирования — это набор модулей. Что внутри, классы, императивный код или чистые функции — не важно.
Благодаря модулям впервые в программировании появилась серьезная инкапсуляция — возможно использовать какие-либо сущности внутри модуля, но не показывать их внешнему миру.
Ключевые моменты:
Модуль — это отдельная именованная сущность программы, которая объединяет в себе другие программные единицы, близкие по функциональности.
Например файл List.mod включающий в себя класс List
и функции для работы с ним — модуль.
Папка Geometry, содержащая модули Shape, Rectangle и Triangle — тоже модуль, хоть и некоторые языки разделяют понятие модуля и пакета (в таких языках пакет — набор модулей и/или набор других пакетов).
Модули можно импортировать (подключать), для того, чтобы использовать объявленные в них сущности.
Основные понятия:
Порожденные понятия:
Языки поддерживающие данную парадигму:
Как основную:
— Haskell
— Pascal
— Python
Как вспомогательную:
— Java
— C#
— ActionScript 3
Поддерживают частично:
— C/C++
В некоторых языках для модулей введены отдельные абстракции, в других же для реализации модулей можно использовать заголовочные файлы (в C/C++), пространства имен, статические классы и/или динамически подключаемые библиотеки.
Вместо заключения
В данной статье я не описал популярные сейчас объектно-ориентированное, обобщенное и функциональное программирование. Просто потому, что у меня есть свое, довольно радикальное мнение на этот счет и я не хотел разводить холивар. По крайней мере сейчас. Если тема окажется полезной для сообщества я планирую написать несколько статей, изложив основы каждой из этих парадигм подробно.
Также я ничего не написал про экзотические парадигмы, вроде автоматного, аппликативного, аспект/агент/компонент-ориентированного программирования. Я не хотел делать статью сильно большой и опять-же если тема будет востребована, я напишу и об этих парадигмах, возможно более подробно и с примерами кода.